

No.: DGC160325013K02

Date: April 16, 2016 Page 1 of 5

Applicant: Zhejiang Tianjie Industrial CORP.
Address: Linglong Economic Development Zone, Lin'an Hangzhou, China.
Manufacturer: Zhejiang Tianjie Industrial CORP.
Address: Linglong Economic Development Zone, Lin'an Hangzhou, China.

Sample Name: COAXIAL CABLE Model No.: RGXX, XX VATC, XX VATCA,XX VRTC, SAT XX , XX D-FB, XC-XV, QRXX, KX XX, LMR XX, CTXX, BTXX, ADXX

Date of Sample Received: March 25, 2016 Test period: March 25, 2016 to April 16, 2016

Test requested: In accordance with RoHS Directive 2011/65/EU and amendment 2015/863/EU, to determine Cadmium (Cd), Lead (Pb), Mercury (Hg), Chromium (Cr⁶⁺), PBBs/PBDEs, Di (2-ethyl hexyl)-phthalate (DEHP), Dibutyl phthalate (DBP), Butylbenzyl phthalate (BBP), Diisobuty phthalate (DIBP) content on submitted samples.

Test method: Please refer to next page.

Test result: Please refer to next page.

Conclusion: Based on the test results, the submitted sample(s) comply with the RoHS Directive 2011/65/EU and amendment 2015/863/EU.

Written by:

Checked by:

Approved by:

This document cannot be reproduced except in full, without prior written approval of ATC. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

 Accurate Technology Co., Ltd.

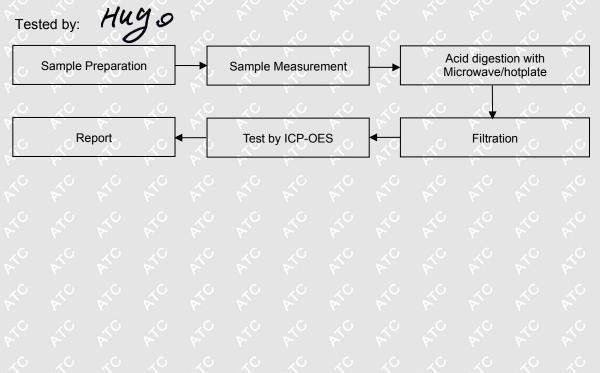
 Address: No.345, Baima Block, Guantai Road, Nancheng District, Dongguan, Guangdong, China

 Tel: (+86-769) 23301666
 Fax: (+86-769) 23301600
 Email: dgcs@atc-lab.com
 Http://www.dgatc-lab.com

No.: DGC160325013K02

Page 2 of 5

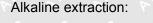
Test results:

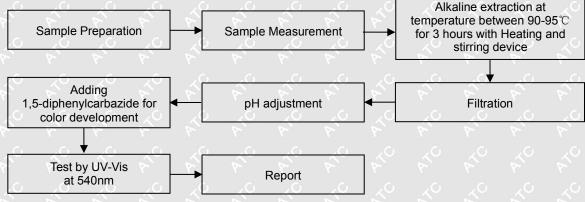

Test Items	Test methods	Unit	MDL	Results No.1	RoHS Limit
Cadmium (Cd)	With reference to	0 _x 0	70	< <u>N.D.</u>	100
Lead (Pb)	IEC 62321-5: 2013, test by ICP-OES	mg/kg	2	N.D.	1000
Mercury (Hg)	With reference to IEC 62321-4: 2013, test by ICP-OES	mg/kg	2	N.D.	1000
Chromium (Cr ⁶⁺) by Alkaline extraction	With reference to IEC 62321: 2008 Annex C, test by UV-Vis	^o mg/kg	2	< ^C N.D.<	1000
Sum of PBBs	1 2° 2° 2° 2	mg/kg	<u>40</u>	N.D.	1000
Monobromobiphenyl		mg/kg	5	N.D.	
Dibromobiphenyl	1 x ⁰ x ⁰ x ⁰ x	mg/kg	5	N.D.	÷.
Tribromobiphenyl		mg/kg	5	N.D.	<u> </u>
Tetrabromobiphenyl	1 X X X X	mg/kg	5	N.D.	<u>~</u> .
Pentabromobiphenyl		mg/kg	5	N.D.	
Hexabromobiphenyl	$\land \land \land \land \land$	mg/kg	5	< [™] N.D. <	<u> </u>
Heptabromobiphenyl		mg/kg	5	N.D.	
Octabromobiphenyl		mg/kg	5	N.D.	<u>, 2</u>
Nonabromobiphenyl		mg/kg	5	N.D.	·
Decabromobiphenyl	With reference to	mg/kg	5	N.D.	<u>, 49</u> .
Sum of PBDEs	IEC 62321-6: 2015, test by GC-MS	mg/kg	×	N.D.	1000
Monobromobiphenyl ether		mg/kg	5	KN.D.K	<u>, 4</u>
Dibromobiphenyl ether		mg/kg	5	N.D.	<u> </u>
Tribromobiphenyl ether		mg/kg	5	N.D.	<u>, 0</u>
Tetrabromobiphenyl ether		mg/kg	5	N.D.	<u> </u>
Pentabromobiphenyl ether		mg/kg	5	N.D.	<u>.</u> <u>A</u>
Hexabromobiphenyl ether		mg/kg	5	N.D.	<u> </u>
Heptabromobiphenyl ether		mg/kg	5	N.D.	<u>. 40</u>
Octabromobiphenyl ether	P P P P	mg/kg	5	N.D.	· · · · ·
Nonabromobiphenyl ether	10 10 10 1	mg/kg	5	< <u>N.D.</u>	<u>, 0</u>
Decabromobiphenyl ether	4 4 4 A	mg/kg	5	N.D.	·
Di (2-ethyl hexyl)-phthalate (DEHP)		mg/kg	30	~ N.D.~	1000
Butylbenzyl phthalate (BBP)	With reference to EN 14372: 2004,	mg/kg	30	SN.D.S	1000
Dibutuyl phthalate (DBP)	test by GC-MS	omg/kgo	30		1000
Diisobuty phthalate (DIBP)	A A A A	mg/kg	30	307	1000

Test Report	No.: DGC160325013K02				Date	: April 1	6, 2016	Page 3 of 5		
Test Part Description:										
No.1: Red plastic jacket										
Note: 🔨 🖉 🖉										
(1) mg/kg=ppm=0.0001%;										
(2) N.D.=Not Detected(<mdl)< td=""><td>;</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></mdl)<>	;									
(3) MDL=Method Detection Li	mit; <									
(4) ""=Not Conducted;										
(5) Specimens, which request	ed to def	termine	Cadmi	um, Mer	cury an	d Lead	Content	, have l	been	
dissolved completely.										

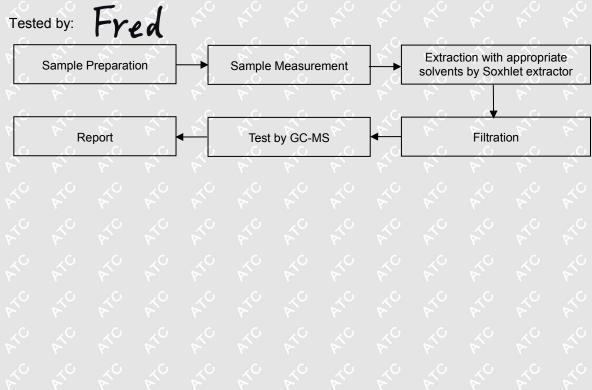
Operation Flow Chart:

1.To Determine Lead, Cadmium, Mercury:





No.: DGC160325013K02


- Date: April 16, 2016 F
 - Page 4 of 5

- 2.To Determine Cr6+::
 - Tested by: Paul

3. To Determine PBBs/PBDEs, DEHP, BBP, DBP, DIBP:

No.: DGC160325013K02

Date: April 16, 2016 Pa

Page 5 of 5

Photograph of Sample:

		dadada 📼		V~			
		***En	id of Re				