**LEDs basic information.**

**A. What is LED Junction temperature (Tj)?**

The following is Cree’s XRE LEDs Section drawing:

![Diagram of LED Junction](image)

The Tj is the heat produced at the surface of the PCB where the diode sits.

**B. Testing the LEDs Junction temperature:**

From the above picture, it is impossible to test the temperature on the LED Junction where the diode touches the PCB.

So, we have to know the **Thermal Resistance** (junction to solder point) of the LEDs. (You can find this data from different brands of LEDs specifications).

For example, Cree XRE LED’s thermal resistance is 8°C/W. First, we test out the solder point temperature, then, we can calculate the Junction temperature according to thermal resistance and the LEDs working power consumption.

The following Cree XRE LEDs power consumption: $3.3 \text{ V} \times 0.35 \text{ A} = 1.155 \text{ W}$

The solder point temperature is 51.2°C.

The LED Junction Temperature (Tj) is $51.2°C + 1.155\text{W} \times 8°C/\text{W} = 60.44°C$
C, The actual LED lamps light efficiency:

Now, the popular LEDs used for LED lamps are 90-100LM/W, or above 100LM/W based on Junction temperature of 25℃. But, For LED lamps, the actual LED junction temperature during working is almost 80℃. Normally, when the Tj is about 80℃, the Luminous flux will be down 10%-20%.

Cree XRE LED information for your reference:
Relative Flux vs. Junction Temperature ($I = 350$ mA)
For the actual lighting efficiency, we have to think about the following factors:

1, The single LEDs light efficiency.
2, The LED driver’s technical specifications. (Driver’s output current)
3, The heat-sink solution.
4, The LED’s Junction temperature.
5, The LEN’s or cover’s light transmission rate.

**D: LEDs Types and Characteristics:**

**A: DIP LED:**

1), DIP LED is without any heat-sink solution. The chip is packaged in Epoxy resin lens.
2), The driving currency should be below 20mA.

**B: SMD LED:**

1), SMD LED is with ceramic heat-sink pad. The chip is covered by Epoxy resin.
2), The driving currency should be below 20mA for one Chip.
C: High power LEDs:

1). High power LED is with ceramic heat-sink pad, and with soldering back solution. The chip is covered by Epoxy resin.
2). The driving currency is from 300-1000mA, depending on light heat-sink solution.

D: COB LEDs

1). COB LED is with COPPER heat-sink pad, and the LED chips are bonded directly on the heat-sink pad.
2). It is independent light source. They don’t need PCB, that avoid one thermo layer and good for heat-sink.
3). The driving currency is from 300-700mA, depending on light heat-sink solution.
High power LEDs Soldering Solution:

We solder the LEDs on metal PCB including the heat-sink pad.

*Most of suppliers just soldered the two legs of LEDs on the metal PCB.

They did not solder the LED’s heat-sink pad on the back. They just put some silicon heat transfer materials on it. It is not stable and the heat-sink solution is not good.

We solder not only the two power legs but also the heat-sink pad on the back. The heat-sink solution is much better than silicon heat-transfer materials.

It is easy for you to check it out. If the LED’s heat-sink pad is not soldered on Metal PCB, The LED heat-sink would be a problem. It will affect the whole lamps life time and the light output decay will be quick.