

INNOVATIVE PLASTICS

CONSISTENCY+ CAPABILITY

Specialized materials for the Healthcare industry

A SABIC COMPANY

Innovative Plastics is a strategic business unit of SABIC. Founded in 1976, SABIC is today the first public, global multinational enterprise headquartered in the Middle East. Its products range from bulk commodity chemicals to highly engineered plastics for demanding applications. It is a leading producer of polyethylene, polypropylene, glycols, methanol and fertilizers and the fourth largest polyolefin producer.

SABIC's businesses are grouped into Chemicals, Performance Chemicals, Polymers, Innovative Plastics, Fertilizers and Metals. It has significant research resources with dedicated Technology & Innovation centers in Saudi Arabia, the Netherlands, Spain, the USA, India, China and Japan.

INNOVATING FOR CUSTOMER SUCCESS

We believe that SABIC customers deserve the full benefit of every advantage our enterprise can offer. After all, our success is defined by our customers' success. And with more than 70 years of experience pioneering advanced engineering thermoplastics, SABIC's Innovative Plastics business is positioned to help create new opportunities for growth and breakthrough applications.

We offer expertise and experience to our customers in a variety of ways:

- Material solutions to help drive innovation and market leadership.
- Design, logistics and processing expertise to spark new ideas and better efficiencies.
- · Unwavering commitment to build longterm relationships with ingenuity, trust and continuous improvement.

It's what we strive for and work to deliver... a mutual benefit.

Excellence and nothing less.

MATERIALS INNOVATION FOR TOMORROW'S HEALTHCARE DESIGNS

A world leader in engineering thermoplastics and specialty compounds, SABIC shares your commitment to innovation, quality and consistency. We are dedicated to enabling healthcare solutions that will help improve quality of life.

CONTENTS

latest innovations for the healthcare industry	4
turning healthcare designs into customer successes	5
HEALTHCARE INDUSTRY SUPPORT — SEGMENTS, PERFORMANCE NEEDS AND APPLICATION DEVELOPMENT	6
Supporting data and regulatory	8
THE INNOVATIVE PLASTICS RESINS PORTFOLIO	10
HEALTHCARE PRODUCTS SUMMARY	11
PRODUCT PORTFOLIO OVERVIEW	12
REPRESENTATIVE HEALTHCARE SEGMENTS	14
segment and material selection considerations	20
CHEMICAL RESISTANCE — PERFORMANCE GUIDELINES	22
PERFORMANCE PROPERTIES — HEALTHCARE RESINS	24
PERFORMANCE PROPERTIES — STANDARD RESINS	26
PERFORMANCE PROPERTIES — LNP* SPECIALTY COMPOUNDS	28

LATEST INNOVATIONS FOR THE HEALTHCARE INDUSTRY

To support customers with changing requirements in the healthcare industry, SABIC continues to develop new materials and processing expertise.

Our recent innovations address important trends, including higher autoclave temperatures; improved compatibility with blood and proteins; enhanced processing for large parts and difficult geometries; and extended offerings for compliance with environmental regulations. Examples of these innovations include:

NEW MATERIALS

- LEXAN* HPX PC RESINS enhanced processing and medium-use autoclave capability (at 121°C)
- LNP* THERMOCOMP* X-RAY SHIELDING COMPOUNDS lead-replacement options for compliance with environmental regulation
- NORYL* HNA MODIFIED PPE RESINS extended-use autoclave capabilities (at 134°C) and excellent chemical resistance
- CYCOLOY* CXXXXXME PC/ABS RESINS thin-wall flame retardance (up to UL94 V0 at 0.75mm) supporting regulatory compliance with an FR system meeting chlorine- and bromine-free requirements; enhanced chemical resistance
- XYLEX* PC/POLYESTER RESIN BLENDS water-clear and colorable, balance of chemical resistance and toughness
- XENOY* PC/PET, PC/PBT RESIN BLENDS outstanding aesthetics, good chemical resistance, excellent impact resistance and toughness

PROCESSING SUPPORT

- CO-INJECTION BLOW-MOLDING FOR BARRIER APPLICATIONS expertise and equipment to support development of customers' barrier applications with Lexan resins
- INJECTION-MOLDED SOLUTIONS VS. MACHINED/STAMPED LEAD LNP Thermocomp x-ray shielding compounds enable injection molding for options of greater design flexibility, part consolidation, and elimination of secondary operations
- IMPROVED PROCESSING FOR COMPLEX PARTS
 enhanced-flow and -release Lexan HPX resins facilitate molding of complex geometries and low draft angles

For more information on Innovative Plastics' offerings for the healthcare industry, please see the table of contents on page 3.

TURNING HEALTHCARE DESIGNS INTO CUSTOMER **SUCCESSES**

SABIC offers a breadth and depth of resources that are a vital ingredient to customer success. Our network of global Manufacturing, Technology & Innovation and Application Development Centers stands ready to support our customers' programs.

WORLD-CLASS TECHNOLOGY, SUPPORT AND **MATERIALS**

Our emphasis on Six Sigma for over a decade enables us to achieve and maintain a track record of enhanced quality and improved productivity. This assists our customers with superior products and access to years of successful Six-Sigma implementation experience we are pleased to share.

Ongoing investment in people, technologies and processes, including state-of-theart manufacturing and application development, is aimed at helping customers solve their design and manufacturing challenges.

Innovative Plastics invented most of the high-performance materials that we sell, from polymers to blends and copolymerized solutions, and pioneered many more capabilities in polymer science.

Innovation continues to drive our culture throughout all industries that we serve, including healthcare. If the right material doesn't exist already, we may be able to custom-compound a solution to meet your application's precise demands.

HEALTHCARE INDUSTRY SUPPORT

MATERIALS EXPERTISE FOR DIVERSE HEALTHCARE SEGMENTS

Cardiovascular and blood care Fluid delivery and IV therapy Drug delivery Surgical instruments Orthopedics Respiratory and sleep therapy

Monitoring and imaging Lab ware and clinical diagnostics Medical lighting Medical trays Animal research and care Pharmaceutical manufacturing

PERFORMANCE MATERIALS TO SUPPORT A RANGE OF REQUIREMENTS

TYPICAL HEALTHCARE REQUIREMENTS

STERILIZATION DIVERSITY

• Gamma, E-beam, autoclave and EtO

BIOCOMPATIBILITY^A

- ISO 10993 or USP Class VI
- Advanced hemocompatibility^B
- Increased platelet retention
- Low protein binding^E

FOOD CONTACT COMPLIANCE

• US FDA, European Union food contact, others

CHEMICAL RESISTANCE

• Disinfectants, cleaners, lipids and IV solutions

WELDING AND BONDING

· Ultrasonic, adhesive and solvent

GENERAL MATERIAL CONSIDERATIONS

OPTICAL CLARITY, COLORABILITY

• View fluids/contents, rapid identification and visual appeal

IMPACT RESISTANCE

- Ductility for practical use conditions
- Low- and high-temperature performance

DIMENSIONAL STABILITY

• Tight tolerance / low creep

HIGH FLOW AND ENHANCED RELEASE

• Complex designs, low draft angles, thin wall and flow length capability

HIGH-PERFORMANCE SPECIALIZATION

· Added strength, lubricity, shielding and anti-stat

FLAME RETARDANCE

- UL 94 HB, V2, V1, V0, 5VB, 5VA
- No bromine/no chlorine flame-retardant systems for compliance with environmental standards such as Blue Angel and TCO'99

Advanced hemocompatibility and Low Protein Binding: Lexan* HPM resins demonstrate improved hemocompatibility vs standard polycarbonate across multiple biomarkers and test methods. Please contact SABIC Innovative Plastics for further information.

A Biocompatibility: material evaluated based on ISO 10993 or USP Class VI protocol; supporting information available by Type I or Type II letter. Reference page 8.

APPLICATION, POLYMER AND PROCESS **DEVELOPMENT ASSISTANCE**

SABIC application development specialists guide customers through the breadth of available materials and processing options to enhance application design and manufacturability. Specialists also connect customers to our technical and commercial innovation teams for novel solutions.

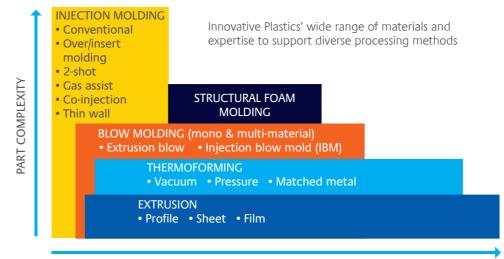
SABIC ColorXpress* centers offer an innovative setting to explore the power of color and effects in bringing new dimensions to applications and affecting how they are

Global Application Technology (GApT) teams lead centers of excellence worldwide to serve our customers in the advancement of new product technologies... from assisting in new design concept development through manufacturability and commercialization.

INDUSTRIAL DESIGN

- Application tear-downs
- Concept designs

PREDICTIVE ENGINEERING


- Computer-Aided Engineering (CAE)
- Computer-Aided Design (CAD)

PROCESS DEVELOPMENT

- Most conversion methods
- Productivity improvements

APPLICATION PERFORMANCE

- Secondary operations
- Controlled laboratory part testing

PART SIZE

ONLINE TOOLS AVAILABLE WHEN YOU NEED THEM... 24 HOURS A DAY, EVERY DAY

sabic-ip.com

- Material selectors
- Product data (e.g., data sheets, engineering design and chemical compatibility data, adhesive and solvent bonding data)
- Engineering calculators (e.g., thermal, structural, flow, fatigue, cost, etc.)
- Tutorials

SUPPORTING DATA AND REGULATORY

THE SABIC INNOVATIVE PLASTICS "HEALTHCARE PRODUCT" POLICY

- Easily identifiable "healthcare product" nomenclature
- Cycolac* HM resins Cycoloy* HC resins Lexan* HP resins Valox* HX resins

- Xenoy* HX resins
- Noryl* HN resins
- Xylex* HX resins
- Biocompatibility assessed (according to ISO10993 or USP Class VI)
- Food contact compliance for most "healthcare products"
- FDA Drug Master File and/or device master file listing (letter of authorization provided as needed)
- SABIC Innovative Plastics "healthcare products" are subject to formula lock and stringent management of change process (ask your SABIC Innovative Plastics representative for more details)

IMPLANT POLICY

SABIC Innovative Plastics does not support applications that remain implanted beyond 29 days.

RESIN BIOCOMPATIBILITY

Typically, a set of tests performed on a resin to determine if the resin or its extractables will cause potential harm to the human body.

SABIC Innovative Plastics biocompatible grades have been tested and passed either USP/USP Class VI biological tests or tests from the ISO 10993 "Biological Evaluation of Medical Devices", or similar grades have been so tested and passed.

SABIC Innovative Plastics does not knowingly support the use of grades not designated as "biocompatible supported" in healthcare applications requiring biocompatibility.

FOOD CONTACT COMPLIANCE

U.S. FDA (Food and Drug Administration): FDA grades comply with the requirements of the U.S. Food, Drug and Cosmetic Act, as amended, and the regulations put forth by the FDA, covering substances for use as basic components of food contact surfaces.

European Union (EU): EU FC grades comply with the compositional requirement of EU Directive 2002/72/EC, and subsequent amendments, for plastics used in food contact applications.

FDA DRUG MASTER FILE (DMF) AND/OR **DEVICE MASTER FILE (MAF)**

SABIC Innovative Plastics maintains U.S. FDA Drug Master Files and/or Device Master Files within the FDA's documentation centers for our "healthcare products". A Letter of Authorization (LoA) for customer's reference of our Master Files and for the FDA's review of our Master Files will be provided upon customer request.

WASTE ELECTRICAL AND ELECTRONIC EQUIPMENT (WEEE) — EU DIRECTIVE 2002/96/EC

WEEE requires OEMs and component and sub-assembly producers providing electrical/ electronics (E/E) products to the EU to collect, recover and treat these products at the end of life.

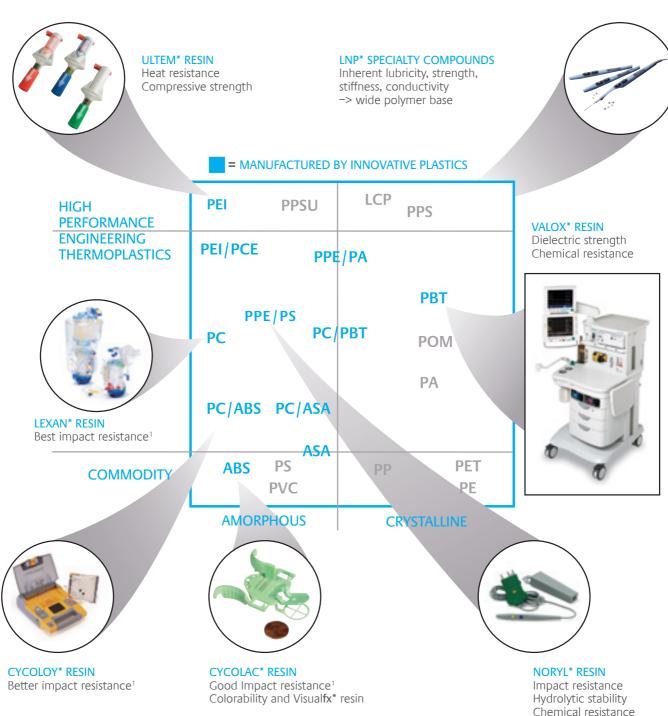
Plastics using brominated flame retardants must be removed and treated separately. To help customers simplify recovery and recycling at end of life, SABIC's Innovative Plastics business offers materials that are inherently flame-retardant or that do not contain brominated or chlorinated flame retardants.

RESTRICTION OF HAZARDOUS SUBSTANCES (ROHS) —EU DIRECTIVE 2002/95/EC

RoHS mandates the "restriction of the use of certain hazardous substances in electrical and electronic equipment," which include lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBBs) and polybrominated diphenyl ethers (PBDEs), except deca-bromine, for E/E products and components placed into the European market after July 1, 2006. Medical devices are not currently within the scope of the RoHS directive, though studies regarding the feasibility of including Categories 8 (Medical Equipment) and 9 (Monitoring and Control Instruments) are underway.

SABIC's Innovative Plastics business offers materials that allow manufacturers to avoid the use of these hazardous substances.

UL 94, EN 60695-11-10/20, IEC 60695-11-


The most widely accepted flammability performance standards for plastic materials are UL 94 ratings. These are intended to identify a material's ability to extinguish a flame, once ignited. Several ratings can be applied based on the rate of burning, time to extinguish, ability to resist dripping and whether or not drips are burning.

Each material tested may receive several ratings based on color and/or thickness. When specifying a material for an application, the UL rating should be applicable for the thinnest wall section in the plastic part. The UL rating should always be reported with the thickness. Just reporting the UL rating without mentioning the thickness is insufficient. EN 60695-11-10 is the European equivalent of UL94; IEC 60695-11-10/20 is the international equivalent of UL 94.

THE INNOVATIVE PLASTICS RESINS PORTFOLIO

The broad and deep Innovative Plastics portfolio delivers diverse performance properties to support key healthcare requirements. The range of our materials and representative applications are shown below.

¹ based on a general performance comparison of ABS, PC/ABS and PC resins

HEALTHCARE PRODUCTS SUMMARY

						STERILIZATIO	N	
CHEMICAL	BIOCOMPATIBLE	LIGHT	CLARITY / GENERAL	STEAM AUTO	OCLAVE (L)	GAMMA AND I	E-BEAM ^{2,3}	ETO ²
CATEGORY, PRODUCT FAMILY, RESIN SERIES AND GRADE	SUPPORTED (I) HEALTHCARE PRODUCT (J)	TRANSMISSION	COLOR	AUTOCLAVE (TEMP °C)	EXPOSURE (CYCLES) ¹	RETENTION OF MECHANICALS	COLOR STABLE ⁴	RETENTION OF MECHANICALS AND COLOR"
PC (POLYCARBONATE) BASED Lexan* PC resins								
HP series	✓	88	clear	121	Limited	✓		✓
HPS series	· ✓	88	clear / gamma blue	121	Limited	· ✓	✓	√
HPX series	· ✓	82	clear / slight blue	121	Medium			√
HPM series	· ✓	77	clear / slight blue	121	Limited	✓		√
HPH series	✓	85	clear	134	Medium	✓		✓
Xylex* PC/Polyester resins		03	cicai		· · · · · · · · · · · · · · · · · · ·			
HX8300HP	1	88	clear			✓		1
	*							*
HX7409HP	✓	79	clear / slight blue			✓	✓	✓
Xenoy* PC/Polyester resins								
HX5600HP	✓	N/A	opaque			✓	√-0	✓
HX6600HP	✓	N/A	opaque			✓	√-0	✓
Cycoloy* PC/ABS resin								
HC1204HF	✓	N/A	opaque			✓	√ -O	✓
ABS (ACRYLONITRILE BUTADIENE Cycolac* ABS resins	STYRENE) BASED							
HMGxxMD	✓	N/A	opaque			✓	√-()	✓
PEI (POLYETHERIMIDE) BASED Ultem* PEI resins								
HU1xx0	✓		clear / amber	134	Extended	✓	√-0	✓
HU1xx4	✓		clear / amber	134	Extended	✓	√-0	✓
HU2xx0	✓	N/A	opaque	134	Extended	✓	√-0	✓
Ultem PEI/PCE (polycarbonate ester) re	esin							
HATXxxx	✓	N/A	opaque			✓	√-()	✓
PPE (MODIFIED POLY(PHENYLENE Nory!* PPO* resins	ETHER)) BASED							
HNA033	✓	N/A	opaque	134	Medium	✓	√-0	✓
HNA055	✓	N/A	opaque	134	Extended	✓	√-0	✓
HN731A	✓	N/A	opaque			✓	√-()	✓
PBT AND/OR PET (POLYBUTYLENE Valox* resins	TEREPHTHALATE AN	ID/OR POLYETHYL	ENE TEREPHTHALATE)	RESINS				
HX215HP	✓	N/A	opaque			✓	√-0	✓
HX312C	· /	N/A	opaque	134	Limited	√	V -O	√
HX420HP	∨	N/A N/A	opaque	134	Limited	√	V-O √-O	√
HX30x1HP	√	N/A	opaque	134	Limited	√	√ -0	√
LNP* SPECIALTY COMPOUNDS (> Due to wide range of base resins and a								
LNP Colorcomp* compounds – small lot molded-in-color	аспачез азес, сараршие	varies	varies					
LNP Lubricomp* compounds – internally lubricated	options may be	N/A	opaque	121 and 13- Limited-to-Exter		options ava	ilable	options available
LNP Thermocomp* compounds – internally reinforced	available	N/A	opaque					
LNP Stat-Kon*, Stat-Loy* and Faradex* compounds – electrically active								

- N/A Not Applicable

 Retention of impact resistance after exposure to autoclave
 Limited L = 1-10 cycles
 Medium M = 1-350 cycles
 Extended E = 1-2500 cycles
 Extended E = 1-2500 cycles

 Gamma radiation; E-Beam (electron beam) radiation; EtO or EO (ethylene oxide).

 After exposure to gamma radiation general (80% or better) maintenance of mechanical properties; data available upon request.

 Noted Lexan grades contain special color-stable package to support enhanced color stability for reduced YI or YI shift.

 Y-O Typically, the influence of radiation on color of opaque grades is limited.
- \checkmark O Typically, the influence of radiation on color of opaque grades is limited.

Additional footnotes listed on page 30.

PRODUCT PORTFOLIO OVERVIEW

LEXAN* PC RESINS

- Polycarbonate resins⁺, ⁺⁺
- Water-clear and colorable
- Excellent toughness and dimensional stability
- Flame-retardant and high flow/release grades
- Healthcare options
 - Biocompatible
 - Sterilization: EtO, γ-Ray, γ-Ray LC, A-121-M and A-134-M
 - Lipid resistance, advanced hemocompatibility^B and low protein binding^B

XYLEX* PC/POLYESTER RESIN BLENDS

- Polycarbonate/amorphous polyester resin blends
- Water-clear and colorable
- Balance of chemical resistance and toughness
- · Dimensional stability
- · Healthcare options
 - Biocompatible^A
 - Sterilization: EtO, γ-Ray, and γ-Ray LC
 - Lipid resistance

CYCOLOY* PC/ABS RESIN BLENDS

- Polycarbonate/acrylonitrile-butadienestyrene resin blends+, ++
- Excellent aesthetics colorable and UV-stable options
- Good balance of toughness/flow and chemical resistance
- Flame-retardant and high flow/release grades
- Healthcare options
 - Biocompatible^A
 - Enhanced resistance to certain disinfectants/cleaners

XENOY* PC/PET, PC/PBT RESIN BLENDS

- Polycarbonate/semi-crystalline polyester resin blends⁺⁺
- Outstanding aesthetics: high gloss and colorable
- UV-stable options
- Good chemical resistance
- Excellent impact resistance and toughness
- Healthcare options:
 - Biocompatible^A
 - Enhanced resistance to certain disinfectants / cleaners

GELOY* ASA AND/OR PC/ASA RESINS

- Acrylic-styrene-acrylonitrile terpolymer resins**
- Great aesthetics: bright whites and colorable
- UV-stable options
- Good chemical resistance
- · Flame-retardant grades

CYCOLAC* ABS RESINS

- Acrylonitrile-butadiene-styrene resins**
- Excellent aesthetics high-gloss options
- Good processability and practical impact
- Flame-retardant grades
- Healthcare options:
 - Biocompatible^A
 - Sterilization: EtO, γ-Ray, and γ-Ray LC

ULTEM* PEI RESINS

- Polyetherimide resins⁺, ⁺⁺
- Transparent and colorable
- High tensile and compressive strength
- · Stiffness and dimensional stability
- Inherent FR, high heat stability, and chemical resistance
- Healthcare options
 - Biocompatible^A
 - Sterilization: EtO, γ -Ray, and A-134-E

NORYL* MODIFIED PPE RESINS

- Modified poly(phenylene ether) resin blends+,
- · Good impact and resistance to acids and bases
- Thermal and electrical resistance
- Excellent hydrolytic stability
- · Balanced strength, stiffness, and dimensional stability
- Healthcare options
 - Biocompatible^A
 - Sterilization: EtO, γ-Ray, and A-134-E

VALOX* PBT AND/OR PET RESINS AND **BLENDS**

- Polybutylene terephthalate (PBT) and/or polyethylene terephthalate (PET) resins**
- Outstanding electrical properties
- Chemical and high-heat resistance
- Healthcare options
 - Biocompatible^A
 - Formaldehyde-free
 - Sterilization: EtO, γ-Ray, and A-134-L

LNP STAT-LOY*, LNP STAT-KON* AND LNP FARADEX* COMPOUNDS

- Electrically active compounds (>20 amorphous and crystalline base resins)
- Anti-stat (Stat-Loy), conductive (Stat-Kon), and EMI/RFI shielding (Faradex)
- Healthcare options Sterilization: EtO. γ-Ray and A-134-E

LNP* LUBRICOMP* AND LUBRILOY* **COMPOUNDS**

- Internally lubricated thermoplastics (>20 amorphous and crystalline base resins)
- Improved wear resistance and no need for external lubrication
- Friction management: reduced 'slip-stick', efficiency loss, and heat build-up
- High-modulus, high-strength options
- Silicone- and PTFE-free options (LNP Lubriloy)
- Healthcare options Sterilization: EtO, γ-Ray and A-134-E

LNP THERMOCOMP* COMPOUNDS

- Internally reinforced thermoplastics (>20 amorphous and crystalline base
- Improved tensile strength and flexural modulus
- Heat and creep resistance
- High specific gravity selections
- Healthcare options
 - Sterilization: EtO, γ-Ray, and A-134-E
 - X-ray shielding compounds to replace lead

LNP COLORCOMP* COMPOUNDS AND VISUALFX* RESINS

• Addition of wide selection of pigments and effects to >20 amorphous and crystalline

KEY

FR (flame-retardant) package available without bromine or chlorine additives RoHS-compliant options available

FtO Fthylene Oxide

Gamma / E-Beam radiation γ-Ray

γ-Ray LC Gamma / E-Beam with clear Low Color Shift

option

A-121-M Steam Autoclave @ 121°C; options within

1-350 cycles

Steam Autoclave @ 134°C; options within A-134-M

1-350 cycles

Steam Autoclave @ 134°C; options within A-134-F 1-2500 cycles

- A Biocompatibility: material evaluated based on ISO 10993 or USP Class VI protocol; supporting information available by Type I or Type II letter. Reference page 8.
- B Advanced Hemocompatibility and Low Protein Binding: Lexan HPM resins demonstrate improved hemocompatibility vs standard polycarbonate across multiple biomarkers and test methods. Please contact SABIC Innovative Plastics for further information.

REPRESENTATIVE HEALTHCARE SEGMENTS

CARDIOVASCULAR AND BLOOD CARE

This area encompasses handling and management of blood, such as during cardiovascular and orthopedic surgeries, blood donations and kidney dialysis treatments. Applications include devices to support extracorporeal systems, blood collection and separation, as well as equipment to move, filter and hold blood.

FLUID DELIVERY AND IV THERAPY

This segment includes handling and management of fluids for use in IV (intravenous) therapy and enteral (gastrointestinal) fluid delivery systems. These systems often include various pumps to facilitate fluid delivery to the patient and connection devices that integrate the fluid bag/bottle, pump and tubing into a single system.

DRUG DELIVERY

Drugs come in diverse forms, requiring delivery devices to span a broad set of formats from injection to inhalation. Safety and patient compliance issues have led to needle-less techniques, improved accuracy/efficiency in drug transfer, as well as aesthetic, miniaturized, ergonomic designs for drug-type identification and consumer appeal/use.

SURGICAL INSTRUMENTS

Due to the breadth of surgical techniques, a variety of tools have been developed to support specific procedures. These range from access devices to hand/ mechanical and powered instruments for open and minimally invasive surgeries. As devices become smaller and more complex, the need for miniaturized components calls for specialized materials to achieve strength, durability and freedom of design.

CASE STUDY

UNIMAX MEDICAL SYSTEMS, INC.

• Auto-locking trocar and suction irrigation set

Upgrade to impact resistant and gamma-stable PC; optimize Challenge:

manufacturing system cost

Solution: Lexan* HPS resins for biocompatibility^A, clarity, gamma sterilization,

impact-resistance, high flow and release for manufacturing complex

Benefits: Gamma-sterilizable instruments, faster production and reduced

system costs

A Biocompatibility: material evaluated based on ISO 10993 or USP Class VI protocol; supporting information available by Type I or Type II letter. Reference page 8.

TYPICAL APPLICATIONS

- Blood oxygenators and reservoirs
- Blood collection and separation bowls
- Filters (leukocyte/arterial)
- Renal dialyzers
- · Blood filter and membrane media

PERFORMANCE CONSIDERATIONS

- Biocompatible^A (devices and membranes)
- Clarity (devices)
- EtO, gamma/E-beam and autoclave sterilization (devices and membranes)
- Good flow for processing (devices and membranes)
- Chemical resistance (membranes)

RESIN SOLUTIONS

- Lexan* HP and HPS resins (devices)
- Lexan HPM resins (devices)
- Valox* HX30x1HP resins (membranes)

TYPICAL APPLICATIONS

- · Stopcocks, luers, Y-sites and check valves
- Fluid filters
- Infusion sets
- Infusion and syringe pumps
- Enteral feeding pumps

PERFORMANCE CONSIDERATIONS

- Biocompatible^A (disposables)
- Clarity (disposables)
- EtO and gamma/E-beam sterilization (disposables)
- Chemical resistance (disposables and pumps)
- Impact resistance (pumps)

RESIN SOLUTIONS

- Lexan HPS and HPX resins (disposables)
- Xylex* HX resins (disposables and pumps)
- Cycoloy* CXxxxxME resins (pumps)
- Ultem* HU resins (disposables)
- Valox HX resins (disposables)

TYPICAL APPLICATIONS

- Inhalers
- Insulin delivery devices
- Needle-less injection devices
- Nebulizers
- Syringes, bottles, tubes and vials

PERFORMANCE CONSIDERATIONS

- Biocompatible^A
- · Clarity and colorability
- EtO, gamma and autoclave sterilization
- Impact and wear resistance
- Formaldehyde-free valves

RESIN SOLUTIONS

- Lexan HP, HPS, and HPX resins
- Cycoloy HC resins
- Xenoy* HX resins
- Cycolac* HM resins
- Valox HX resins
- LNP* Lubricomp* compounds

TYPICAL APPLICATIONS

ACCESS DEVICES

- Trocars, retractors and speculums HAND INSTRUMENTS
- Staplers, forceps and clip appliers

POWERED INSTRUMENTS

· Electrosurgical, thermal ablation and directed energy devices

PERFORMANCE CONSIDERATIONS

- Biocompatible^A
- EtO, gamma and autoclave sterilization
- Strength and stiffness
- Ductility and toughness
- Precision fit and high dimensional
- Smooth part interaction and low wear

RESIN SOLUTIONS

- · Lexan HP, HPS and HPX resins
- Cycolac HM resins
- Ultem HU resins
- LNP Lubricomp compounds
- LNP Thermocomp* compounds

CASE STUDY

INCISIVE SURGICAL, INC.

• INSORB® | 20 subcuticular skin stapler

Ergonomic, lightweight design Challenge:

(metal replacement) and disposable

Ultem HU resins for biocompatibility^A, compressive strength, custom Solution:

colors, EtO and gamma sterilization

Benefits: High performance, parts consolidation and award-winning design

A Biocompatibility: material evaluated based on ISO 10993 or USP Class VI protocol; supporting information available by Type I or Type II letter. Reference page 8.

REPRESENTATIVE HEAITHCARE SEGMENTS

ORTHOPEDICS

Orthopedic devices support surgical and non-surgical techniques to preserve and/ or restore the musculoskeletal system, limbs, etc. They include external fixators to immobilize the position of bones throughout the healing process, as well as shortterm joint implant test devices (trial heads) to determine correct size for long-term joint implants^c.

RESPIRATORY AND SLEEP THERAPY

These devices and supporting equipment are used for treating respiratory-related illnesses in hospitals, clinics and at home. Respirators, ventilators, positive airway pressure devices and respiratory masks assist a growing number of patients with ongoing therapy needs.

MONITORING AND IMAGING

Monitoring and imaging devices comprise a very diverse range of applications from hand-held and small devices such as pulse oximeters, blood pressure and other patient monitors to larger transportable devices such as anesthesia delivery and ultrasound, to very large stationary equipment such as x-ray, CT, MRI and PET imaging machines.

LAB WARE AND CLINICAL DIAGNOSTICS

The segment encompasses instruments and accessories for the analysis and diagnosis of patient samples, as well as for pharmaceutical and biopharmaceutical research. They range from disposable vials and containers for sample collection, to hand-held instruments, such as pipettors, for sample preparation, to clinical diagnostic equipment for rapid processing/evaluation of many samples.

CASE STUDY

GE HEALTHCARE

Voluson® E8 OB/GYN ultrasound system

Challenge: One-third smaller and lighter, balance of performance, aesthetic and

chemical resistance for >30 components

Solution: Cycoloy* CX2244ME resins for impact-resistant thin-wall FR enclosures

LNP* Thermocomp* PB10010 compound for strength and stiffness of

handle and cable holder

Benefits: Weight/system cost benefits of thin-wall molding with molded-in

custom colors and effects; FR system meeting chlorine- and bromine-

free standards

C Implant Policy: SABIC Innovative Plastics does not support applications that remain implanted beyond 29 days.

TYPICAL APPLICATIONS

- Knee and hip trials
- · External bone fixation devices
- Instrument handles
- Bone cement mixers
- Trays and cases

TYPICAL APPLICATIONS

- Respirators and ventilators
- Positive Airway Pressure (PAP) devices
- Humidifier tanks
- Oxygen concentrators
- Respiratory masks and valves

PERFORMANCE CONSIDERATIONS Biocompatible^A (airflow pathways)

PERFORMANCE CONSIDERATIONS

· EtO, gamma and autoclave

• Impact and chemical resistance

- Clarity (masks)

Biocompatible^A

sterilization

Colorability

Dimensional stability

- EtO and autoclave sterilization (masks and tanks)
- · Impact and chemical resistance (masks and equipment)
- Flame retardance and EMI/RFI shielding (equipment)

PERFORMANCE CONSIDERATIONS

- · Durability and impact resistance with light weight
- Chemical resistance to cleaners/ disinfectants
- WEEE and RoHS compliance
- Flame retardance and EMI/RFI shielding
- · Colorability and indoor UV stability

RESIN SOLUTIONS

- Lexan* HPS and HPX resins
- Ultem* HU resins
- Noryl* HNA resins
- LNP* Lubricomp* compounds
- LNP Thermocomp* compounds

RESIN SOLUTIONS

- Lexan HP, HPX4 and HPH4504H resins (masks)
- Lexan EXL resins (equipment)
- Cycoloy* CXxxxxME resins (equipment)
- LNP Faradex* and Stat-Loy* compounds (equipment)

TYPICAL APPLICATIONS

- · Imaging equipment (MRI, CT, PET and x-ray)
- Anesthesia delivery and monitoring
- Patient monitors
- Blood alucose meters
- External defibrillators

RESIN SOLUTIONS

- Lexan 9x5 and EXL resins
- Cycoloy resins
- Geloy* resins
- Ultem HU and 2xxx resins
- LNP Faradex and Thermocomp compounds (equipment)

TYPICAL APPLICATIONS

- Vials, tubes
- Diagnostic vial transport trays
- Pipettors
- Diagnostic machines
- Cassettes, centrifuges and covers

PERFORMANCE CONSIDERATIONS

- Biocompatible^A (disposables)
- Clarity (disposables)
- Gamma and/or autoclave sterilization
- Impact and chemical resistance
- Light weight (equipment)

RESIN SOLUTIONS

- Lexan HP and HPS resins (disposables)
- Lexan EXL resins (equipment)
- Cycoloy CXxxxxME resins
- Ultem HU resins (equipment)
- LNP Lubricomp and Thermocomp compounds (equipment)

CASE STUDY

GE HEALTHCARE

• Aisys® Carestation® anesthesia delivery system

Durability, light weight, chemical resistance, and cost-effectiveness Challenge: Ultem HU resins for autoclavable and chemically resistant gas reservoir Solution:

Noryl resins for panels and doors with structural stiffness with

lightweight

Valox* resins for work surfaces with resistance to cleaning chemicals

Benefits: Maintain structural integrity over life of system with easy

maneuverability throughout hospital; resistance to wear and tear

A Biocompatibility: material evaluated based on ISO 10993 or USP Class VI protocol; supporting information available by Type I or Type II letter. Reference page 8.

REPRESENTATIVE HEAITHCARE SEGMENTS

MEDICAL LIGHTING

Focused lighting is critical in healthcare areas from general examination rooms to surgical theaters to dental offices. The generation or avoidance of heat from light sources is important in areas such as an operating room. In other cases, such as infrared therapy lighting, heat generation is desired. Lighting systems utilize a wide variety of components including housings, reflectors, handles and covers.

MEDICAL TRAYS

Trays are used to transport instruments after surgery and to hold them during sterilization. In manufacturing, trays are used to transport vials and other items throughout the facility. Common to all types of trays is impact resistance to withstand unintended drops.

ANIMAL RESEARCH AND CARE

Animal care requires tools and support devices similar to those for human healthcare, for use in assessing and treating health issues. In addition, there are various bins, cages and feeding devices used in laboratories. This equipment must be cleaned and sterilized on a regular basis to help ensure proper care of laboratory animals.

PHARMACEUTICAL MANUFACTURING

Devices and equipment such as connectors, filtration housings and filtration media are used in the manufacturing and processing of pharmaceuticals, including biopharmaceuticals. Many such devices are being created in disposable formats.

CASE STUDY

MERIVAARA OY

• Merilux X1 examination lamp

Challenge: Reduce excessive heat from surgical lamp

Ultem* 1000 resins combined with dichroic coating for heat Solution:

management and lighter-weight reflector

Valox* resins for heat and chemically resistant housing; parts

consolidation

Benefits: Improved patient and staff comfort from irradiation of IR heat upwards

vs. into surgical area. Simplified housing design for manufacturability

and improved appearance

TYPICAL APPLICATIONS

- Luminaire housings
- IR transparent housings
- Reflectors
- Handles
- · Light source covers

PERFORMANCE CONSIDERATIONS

- Heat management
- Lightweight
- · Durability and reliability
- Flame and chemical resistance
- Biocompatible^A and autoclave sterilization (handles)

RESIN SOLUTIONS

- Ultem* 10x0 resins (reflectors)
- Noryl* HNA055 resins (handles)
- Valox* resins (housings)

TYPICAL APPLICATIONS

- Dental instrument trays
- Surgical instrument trays
- Microsurgery and scope trays
- Vial transport and storage trays

PERFORMANCE CONSIDERATIONS

- Biocompatible^A
- Autoclave sterilization
- Impact, crack, and craze resistance
- Chemical resistance
- Colorability

RESIN SOLUTIONS

- Lexan* HPX and HPH4504 resins
- Ultem HU1000 resins
- Noryl HNA resins
- LNP* Colorcomp* compounds

TYPICAL APPLICATIONS

- Surgical tools
- Cages and bins
- Racks
- Water bottles

PERFORMANCE CONSIDERATIONS

- · Clarity and colorability
- Lightweight
- Durability and impact resistance
- · Chemical resistance
- Autoclave sterilization

RESIN SOLUTIONS

- Lexan HPX and HPH4504 resins
- Ultem HU1000 resins
- Noryl HNA resins
- LNP Colorcomp compounds

TYPICAL APPLICATIONS

- · Connectors, couplings, and fittings
- Filtration and cassette housings
- · Melt-blown membrane media

PERFORMANCE CONSIDERATIONS

- Gamma/E-beam and autoclave sterilization
- Advanced protein compatibility (housings and membranes)
- Clarity and low haze post-sterilization (housings)
- Chemical resistance (housings and membranes)

RESIN SOLUTIONS

- · Lexan HPH, HPX4, and HPS resins
- Lexan HPM19x4 lower protein binding resins
- Ultem HU resins
- Noryl HNA resins
- Valox HX30x1HP resins

CASE STUDY HURST CORP.

• Terminal sterilization vial tray

Eliminate creation of ferrous, talc, resin, and glass particles from Challenge:

wear of fiberglass and metal trays

Noryl HNA resins for extended-duty, high-heat autoclave sterilization, Solution:

impact resistance, colorability, and biocompatibility^A

Reduced opportunity for particles to contaminate vials during Benefits:

transport and sterilization. Repeat-use trays, rigidity for reliable

stacking

A Biocompatibility: material evaluated based on ISO 10993 or USP Class VI protocol; supporting information available by Type I or Type II letter. Reference page 8.

SEGMENT AND MATERIAL SELECTION CONSIDERATIONS

PRODUCT FAMILY	BLOOD MANAGEMENT	FLUID DELIVERY AND IV THERAPY	DRUG DELIVERY	SURGICAL INSTRUMENTS	ORTHOPEDICS
Lexan* PC resins++	Disposables HP and HPS resins: clarity, impact resistance, EtO, \(\gamma \text{ray LC}, \text{ A-121-L} \) HPM resins: clarity, impact resistance, reduced protein binding (B), EtO, A-121-L	Disposables HPS7 resin: clarity, lipid resistance, EtO, γ-ray LC, A-121-L HPX resins: clarity, impact resistance,improved processing, EtO, A-121-M Pump housings HP resins: clarity, impact resistance, colorability, A-121-L	Disposables HP and HPS series resins: clarity, impact resistance, EtO, γ-ray (HPS-LC), A-121-L HPX resins: clarity, impact resistance, improved processing, EtO, A-121-M Device housings HP resins: clarity, colorability, impact resistance, A-121-L	Instrument handles HP and HPS series resins: clarity, impact resistance, EtO, \(\gamma\)-ray (HPS- LC), A-121-L HPX resins: clarity, impact resistance, improved processing, EtO, A-121-M HPH resins: clarity, A-134-M	External fixation HPS resins: clarity, impact resistance, EtO, y-ray LC, A-121-L HPX resins: clarity, impact resistance, improved processing, EtO, A-121-M
Xylex* PC/ Polyester resin blends++		Disposables HX7409HP resin: clarity, lipid resistance, EtO, γ-ray LC Pump housings Xylex HX and X series resins: clarity, enhanced chemical resistance	Device Housings Xylex HX resins: clarity, enhanced chemical resistance		Cement mixer bowls Xylex HX resins: clarity, enhanced chemical resistance
Cycoloy* PC/ABS resin blends++		Pump housings CXxxxxME and CY6xxx series resins: for balance of impact resistance and enhanced chemical resistance	Device housings HC biocompatible resins: for impact resistance, colorability		
Xenoy* PBT, PET/PC resin blends++		Pump housings Xenoy HX and X series resins: balance of impact resistance and enhanced chemical resistance	Device Housings Xenoy HX resins: balance of impact resistance and enhanced chemical resistance	Surgical Handles Xenoy HX resins: balance of impact resistance and enhanced chemical resistance, colorability	
Geloy* ASA resins					
Cycolac* ABS resins++			Device Housings HMxxMD resins: general balance of toughness and flow, excellent aesthetics, high gloss	Instrument handles HMxxMD resins: general balance of toughness and flow, excellent aesthetics	
Ultem* PEI resins++		Disposables HU series resins: enhanced chemical and lipid resistance, EtO, γ-ray	Disposables HU series resins: enhanced chemical and lipid resistance, EtO, γ-ray, A-134-E	Instrument handles and internal gears/latches HU series resins: tensile and compressive strength, enhanced chemical resistance, EtO, γ -ray, A-134-E	External fixation and temporary joint trials HU series resins: strength, stiffness, EtO, γ-ray, A-134-E
Noryl* modified PPE resins++				Internal components HNA resins: chemical resistance, EtO, γ-ray, A-134-E	Temporary joint trials HNA resins: chemical resistance, A-134-E
Valox* PBT and/ or PET semi- crystalline resins and blends++	Melt blown fibers HX30x1HP resins: melt blown membrane media	Disposables Valox HX series resins: enhanced chemical resistance EtO, γ-ray	Internal Components Valox HX resins: formaldehyde- free wear resistance, EtO, γ-ray		
LNP* compounds:	>20 amorphous and crystalline ba	ase resins +,++. Sterilization op	otions: EtO, γ-Ray, A-121/134-	L/M/E	
LNP Lubricomp* com	pounds – internally lubricated		Internal components / gears	Internal components / gears	
LNP Thermocomp* co	ompounds - internally reinforced		Internal components	Internal components	Temporary joint trials Fixation devices
frequency interference	unds - for electromagnetic and radio e (EMI/RFI) attenuation	Pump housings			
LNP Stat-Kon* compo antistatic, through co- interference (EMI) shie	unds for surface resistivity from nductive, to electromagnetic elding.				
LNP Stat-Loy* compou performance	ands for permanent anti-static		Housings/Spacers		
LNP Colorcomp* com special effects	pounds for added colors and/or	Pump housings	Housings/handles	Surgical handles	Handles

In the chart below, only materials listed with nomenclature beginning with "H" are biocompatible supported (I) by SABIC Innovative Plastics; other materials are not. See page 8.

+: Grades available without bromine and/or chlorine additives (F). ++: ROHS compliant grades available (H).

EtO: Ethylene Oxide. γ-ray: Gamma / E-Beam. γ-ray LC: Gamma / E-Beam with clear Low Color Shift options.

A-121-M: Steam Autoclave @ 121°C; options within 1-350 cycles. A-134-M: Steam Autoclave @ 134°C; options within 1-350 cycles.

A-134-E: Steam Autoclave @ 134°C; options within 1-2500 cycles.

RESPIRATORY AND MONITORING AND SLEEP THERAPY IMAGING		LAB WARE AND CLINICAL MEDICAL DIAGNOSTICS LIGHTING		MEDICAL TRAYS	ANIMAL RESEARCH AND CARE	BIOPHARMACEUTICAL EQUIPMENT
Respiratory masks HP resins: clarity, impact resistance, EtO, A-121-L HPH resins: clarity, A-134-M Masks, humidifier tanks, enclosures HPX4 resin: clarity, improved processing, hydrolytic stability, chemical resistance, A-121-M EXL resins: impact resistance, toughness, enhanced processing, FR options	Equipment enclosures 9x5(A)(U) resins: FR, impact resistance, (Transparency and UV stable options) FL3000 resin: foamable FR EXI. resins: impact resistance, toughness, enhanced processing, FR options	Equipment enclosures 9x5(A)(U) resins: FR, impact resistance, (Iransparency and UV stable options) FL3000 resin: foamable FR EXL resins: impact resistance, toughness, enhanced processing, FR options Disposables HP and HPS series resins: clarity, impact resistance, EtO, 7-ray (HPS-LC) HPH resins: clarity, A-134-M	Reflector Cover SLX resins: enhanced UV stability, transparent and tinted colour options	Transport tts HPX4 resin: clarity, improved processing, hydrolytic stability, chemical resistance, A-121-M HPH resins: clarity, A-134-M	Cages and bins HPH resins: clarity, A-134-M Water/Feeding Bottles 1x4R resins: clarity, injection blow moulding, ductility	Connectors and filtration housings HPM resins: clarity, impact resistance, advanced hemocompatibility (B), EtO, A-121-L HPS resins: clarity, impact resistance, EtO, y-ray LC, A-121-L HPH resins: clarity, A-134-M HPX resins: clarity, impact resistance, improved processing, EtO, A-121-M
Equipment enclosures CXxxxxME and CY6xxx series resins: for balance of impact resistance and enhanced chemical resistance, FR	Equipment enclosures CXxxxxME and CY6xxx series resins: for balance of impact resistance and enhanced chemical resistance, FR CM6210 resin: thermoformed panels, FR	Equipment enclosures CXxxxxME and CY6xxx series resins: for balance of impact resistance and enhanced chemical resistance, FR				
	Equipment enclosures Xenoy resins: high gloss, balance of impact, chemical and UV resistance, FR options	Equipment enclosures Xenoy resins: high gloss, balance of impact, chemical and UV resistance, FR options				
	Equipment enclosures Geloy resins: bright whites, good UV stability, flow capability, lower heat resistance	Equipment enclosures Geloy resins: bright whites, good UV stability, flow capability, lower heat resistance				
	Equipment enclosures Cycolac resins: excellent aesthetics, high gloss, FR options	Equipment enclosures Cycolac resins: excellent aesthetics, high gloss, FR options				
Internal components / impellers HU resins: strength, stiffness, dimensional stability	Internal gears/latches and other components HU resins: strength, stiffness, dimensional stability (HU)2xxx series resins: reinforced strength	Internal gears/latches HU series resins: tight tolerance, strength, stiffness, EtO, y-ray, A-134-E (HU)2xxx series resins: reinforced strength	Reflector 10x0 and XH6050 resins: light weight metal replacement, heat management options Removable Handles HU resins: chemical resistance and repeat autoclave sterilization (A-134-E)	Surgical and dental trays HU100x resins: transparancy, chemical resistance, extended duty autoclave sterilization (A-134-E)	Cages and bins HU100x resins: transparancy, chemical resistance, extended duty autoclave sterilization (A-134-E)	Connectors and filtration housings HU100x resins: transparancy, chemical resistance, extended duty autoclave sterilization (A-134-E)
	Equipment enclosures FN series resins: foamable panels, FR	Equipment enclosures FN series resins: foamable panels, FR	Removable handles HNA resins: for chemical resistance and repeat autoclave sterilization (A-134-E)	Transport, surgical and dental trays HNA resins: chemical resistance and repeat autoclave sterilization (A-134-E)	Cages and bins HNA resins: chemical resistance and repeat autoclave sterilization (A-134-E)	Connectors and filtration housings HNA resins: chemical resistance and repeat autoclave sterilization (A-134-E)
	Work surfaces Valox resins: enhanced chemical resistance, FR options		Luminaire housing Valox resins: enhanced chemical resistance, FR options			Filter media HX30x1HP resins: for melt blown membrane media
Internal components	Internal gears/latches and other components	Internal gears/latches and other components				
	Internal gears/latches and other components	Internal gears/latches and other components				
Equipment enclosures	Equipment enclosures	Equipment enclosures				
Equipment enclosures	Equipment enclosures	Equipment enclosures				
Equipment enclosures	Equipment enclosures	Equipment enclosures		Surgical and dental trays	Cages and bins	

CHEMICAL RESISTANCE PERFORMANCE GUIDELINES

		Exposure time (days)	Bleach sodium hypochlorite solution, 50%	Cidex® glutaraldehyde based disinfectant	Methyl ethyl ketone (MEK)	Virex® organic ammonium chloride based disinfectant	Betadine® microbicide; povidone- iodine solution	Ethanol (ethyl alcohol)	Hydrogen peroxide 3%	Isopropanol (isopropyl alcohol: ipa) 70%	Saline 10%	Lipid hydrocarbon-containing organic compounds; fatty acid derivatives	DEHP diethylhexylphthalate
PRODUCT FAMILY	GRADE/SERIES												
LEXAN* PC	RESINS e products												
ricaltrical	HP1R	3	0	•			•		•	0	•		
	HPS2R	3	•	0			Ö	•	Ö	0	0		
	HPS7	3	•				Ö	Ö	7 days 😷		Ö		5 days 😛
	HPX4	3	0	0			•	0	0	0	•		
	HPM1914	3	0	0			0				0	0	
	HPM1944	3	0	0		0	0	0	0	0	0	•	
	HPH4404	3	0 0 0 0	0		0	0	0	0	<u> </u>	0		
	HPH4704	3		•		•	+	— —		— —			
Standard		7											
	925	7						0 0 0					
	925A	7					X	X	X	X			
	945AU	7	0 0 0 0			0	0	Ö	0	0	+		
Standard	Products —												
	flow / ductility resins												
	EXL1414	7	(1)	•			(1)	•	•	•	•		
	EXL9112	7		0			• ••	+	•	•	(1)		
	EXL9330	7	+	•		0	***	***	•	•	***		
	EXL9335	7	<u> </u>	0		•	+	+			0		
	POLYESTER RESIN BLENDS												
Healthcar	e products												
	HX7409HP HX8300HP	3	+	•			•	<u> </u>	•	•	•		
YVI FY* DC/	POLYESTER RESIN BLENDS	3					•			•			
	e products												
ricaltrical	HX5600HP	7		0			A	•	A		0		
	HX6600P	7	Ō	+	0	0	O	A	0		0		•
CYCOLOY*	PC/ABS RESIN BLENDS												
Healthcar	e Products												
	HC1204HF	7								<u> </u>			
Standard				_	_	_							
	C2950	7			_								
	C6600	7									(1)		
	CX2244ME CX2142ME	7					•		•				-
CYCOLAC*	ABS RESINS	1											
	e products												
	HMG47MD	7	<u> </u>						A				
	HMG94MD	7	•						0				
Standard							_						
	MG37EPN	7				0			•		•		
	XHMM1	7	•						•		•		
	GRM2600L	7	<u> </u>						I 🙉		I 🕋 🗆		

LEGEND FOR SYMBOLS

Ompatible at 0.5% strain

Compatible at 1.0% strain
Compatible at 1.5% strain

Marginal for one or both measures at 0.5% strain Marginal for one
Marginal for one
Not compatible Marginal for one or both measures at 1.0% strain Marginal for one or both measures at 1.5% strain

LAB BENCH COMPATIBILITY RATING:

Color rating Retention tensile Retention tensile stress at yield, %elongation at break, % MARGINAL 80 - 89

	Exposure time (days)	Bleach sodium hypochlorite solution, 50%	Cidex® glutaraldehyde based disinfectant	Methyl ethyl ketone (MEK)	Virex® organic ammonium chloride based disinfectant	Betadine® microbicide; povidone- iodine solution	Ethanol (ethyl alcohol)	Hydrogen peroxide 3%	Isopropanol (isopropyl alcohol; ipa) 70%	Saline 10%	Lipid hydrocarbon-containing organic compounds; fatty acid derivatives
PRODUCT FAMILY GRADE/SERIES											
ULTEM* PEI RESINS											
Healthcare products											
HU1010	7	<u> </u>	0		0	<u> </u>	A	<u></u>	(4)	•	
HU2300	7									+	
HATX100	7		—				•				<u></u>
NORYL* MODIFIED PPE RESIN BLENDS									A STA		
Healthcare products											
HN731E	7	<u></u>	<u></u>			<u> </u>	<u> </u>	<u> </u>	•	•	
HNA033	7	+	0			A	0		A		
HNA055	7	•	•		<u> </u>	1	0	(1)	•	•	•
Standard products											
GFN2	3	<u> </u>	<u> </u>	0	<u> </u>	<u> </u>	<u> </u>	•	•	•	
VALOX* PBT AND/OR PET RESINS AND BLEN Healthcare products											
HX215HPR	3	<u> </u>	0								0
HX420HP	3	0		0	+	0	•	+	0	0	•
Standard products	, 5		_								
365	3	+	<u> </u>								
855	3		0	0	•	0	•	0	0	0	
LNP* LUBRICOMP* COMPOUNDS –											
Internally lubricated											
AL003	7	•			0	A		•		•	
DFL36	3	Ŏ	•A	0		0	•	Ŏ	0	Ŏ	
EL003	7	Ŏ	0		A	0	Ŏ	Ŏ	Ŏ	Ŏ	
RFL36	7	0	O O O O	0	0	0	0	0	0	+ + + + + + + + + + + + + + + + + + +	
WFL36	7	Ŏ	Ŏ	0	Ŏ	0	Ö	Ŏ	Ŏ	Ŏ	
ZFL36CCX	7	Ŏ	Ŏ		0	Ö	Õ	Ŏ	Ŏ	Ŏ	
LNP THERMOCOMP* COMPOUNDS -											
Internally reinforced											
DF006ER	3	0 0 0 0 0 0 0 0	0 0 0 0	•		<u> </u>	0 0 0 0	0 0	0 0	+ + + + + + + + + + + + + + + + + + +	
EF006	7		₩		0	0	Q	<u>Q</u>			
LF006	7		<u> </u>		<u> </u>	<u> </u>		<u>Q</u>			
RF006	7	<u> </u>	₩	0	<u> </u>	0		₩	<u> </u>		
UF008 WF006	7	0	<u> </u>	Ų Ų		0	Ų Ų	<u>Q</u>	<u> </u>	<u> </u>	
	7			. 🦰 .	_						

CHEMICAL RESISTANCE TESTING ACCORDING TO ISO 4599 (DETERMINATION OF RESISTANCE TO ENVIRONMENTAL STRESS CRACKING (ESCR) — BENT STRIP METHOD) OR ASTM D543 (EVALUATING THE RESISTANCE OF PLASTICS TO CHEMICAL REAGENTS).

This information should be used as indicative only: Accurate chemical compatibility can only be determined under final application conditions. Therefore, extensive testing of the finished part is strongly recommended. The performance and interpretation of end-use testing are the end producers responsibility.

STRAIN LEVEL < 0.5%

Generally represents molded-in stress of actual part, when designed and molded in line with recommended guidelines

A material is generally more susceptible to chemical attack at higher strain levels. [e.g. chemically induced cracking will more readily occur at strain level 1.5% than at strain level 0.5%]

TEST TEMPERATURE - 23°C

PERFORMANCE PROPERTIES HEALTHCARE RESINS

		05.051-0	D D 1711 47			HEALTHCARE						PROPERTIES (E)		
	None LEVEL	OF RELEASE A Standard	DDITIVE Higher	Data	RoHS	TANDARDS AND Biocompatible	REGULATOR Food c		Lipid	Light transmission	Specific gravity	Melt flow rate	Mold shrinkage flow, 3.2 mm	
roduct		Grade / serie	S	provided for:	compliant	supported (I) healthcare	FDA (K)	EU (K)	resistance	ASTM D 1003	ASTM D 792	ASTM D 1238	SABIC Method	
amily					(H)	product (J)				%	-	g/10 min	%	
EXAN* tandard	PC RESINS	5										300°C/1.2 kgf		
		HP1HF		HP1HF		•		•		88	1.18	39	0.5 - 0.7	
		HP1	HP1R	HP1						88	1.2	25	0.5 - 0.7	
	HP2NR	HP2	HP2R	HP2						88	1.2	17.5	0.5 - 0.7	
	HP4NR	HP4	HP4R	HP4						88	1.2	10.5	0.5 - 0.7	
	HP6NR	HP6		HP6						88	1.2	7	0.5 - 0.7	
amma s	stabilized ²													
		HPS1	HPS1R	HPS1				Not listed		88	1.2	25	0.5 - 0.7	
		HPS2	HPS2R	HPS2				Not listed		88	1.2	17.5	0.5 - 0.7	
		HPS4		HPS4				Not listed			1.19	10.5	0.5 - 0.7	
		HPS6	HPS6R	HPS6				Not listed		88	1.2	7	0.5 - 0.7	
		HPS7	HPS7R	HPS7				Not listed		88	1.2	5	0.5 - 0.7	
	C SPECIAL	LTY CLEAR R	ESINS									300°C/1.2 kgf		
mance	a brocessill	9	HPX8R	HPX8R						82	1.19	35	0.4 - 0.8	
	HPX4			HPX4						82	1.19	10	0.4 - 0.8	
dvance		npatibility; Lov	ver protein h										51. 5.5	
	HPM1914			HPM1914			Not tested	Not listed		77	1.19	25 (3.8 kgf)	0.6 - 0.9	
	HPM1944			HPM1944			Not tested	Not listed			1.19	10	0.6 - 0.9	
	t autoclava	bility		1			1	1.100.0000						_
3		HPH4404		HPH4404				Pending		85	1.2	6	0.6 - 0.8	_
		HPH4504H		HPH4504H				Pending		85	1.2	3	0.7 - 0.8	
		HPH4704		HPH4704				Pending		85	1.2	2	0.8 - 1.0	
ENOY*	PC/POLYE	STER BLEND	DS .									250°C/5.0 kgf		
	-1		HX5600HP	HX5600HP						Opaque	1.22	11	0.7-1.1	
			HX6600HP	HX6600HP						Opaque	1.21	11	1.2-1.6	
YLEX*	PC/POLYES	STER RESIN E								- 1 - 1 - 1		265°C/2.16 kgf		_
	HX8300HF			HX8300HP				Not listed		88	1.2	15	0.5 - 0.8	
		HX7409HP		HX7409HP			1			79	1.2	3	0.6 - 0.8	
YCOLO	DY* PC/ABS	S RESIN BLE	NDS									260°C/5.0 kgf		
		HC1204HF		HC1204HF						Opaque	1.15	19	0.5 - 0.7	
YCOLA	AC* ABS RE	ESINS										230°C/3.8 kgf		
			HMG47MD	HMG47MD						Opaque	1.04	5.6	0.5 - 0.8	
			HMG94MD	HMG94MD						Opaque	1.04	11.7	0.5 - 0.8	
JLTEM*	PEI RESIN	S			·							337°C/6.6 kgf		
	HU1000		HU1000E	HU1000						75	1.27	9	0.5 - 0.7	
	HU1004			HU1004							1.28	10	0.5 - 0.7	
	HU1110			HU1110		•		•			1.36	16	0.5 - 0.7	
	HU2410		İ	HU2410				Not listed			1.61	5.2	0.1 - 0.3	
JLTEM I	PEI/PCE RE	SIN BLENDS												
			HATX200	HATX200			1	Pending		Opaque	1.26	24	0.5 - 0.7	
IORYL*	MODIFIE	PPE RESIN	BLENDS									300°C/5.0 kgf		
			HNA033	HNA033						Opaque	1.08	8.3	0.7 - 0.9	
			HNA055	HNA055						Opaque	1.07	7.2	0.5 - 0.8	
			HN731A	HN731A						Opaque	1.06	9.2 (280°C)	0.5 - 0.7	
/ALOX*	PBT AND	OR PET RESI	INS AND BL	ENDS								250°C/2.16 kgf		
	,	HX215HP		HX215HP		•	1			Opaque	1.31	80	0.9 - 1.6	
	HX312C		İ	HX312C			1			Opaque	1.31		0.9 - 1.6	
	HX420HP		İ	HX420HP			1			Opaque	1.53	26	0.3 - 0.8	
	HX3061HF	,		HX3061HP			1			Opaque	1.31	50	1.5 - 2.0	

Yes

Advanced hemocompatibility and low protein binding: Lexan HPM resins demonstrate improved hemocompatibility vs standard polycarbonate across multiple biomarkers and test methods. Please contact SABIC Innovative Plastics for further information.

1 FDA food contact with use limitations

2 LEXAN HPSxS resins - highest release level

Additional footnotes listed on page 30.

Some grades/series listed below have new nomenclature according to SABIC Innovative Plastics "Healthcare Product" policy; see page 8.

Tensile stress, yld ASTM D 638 MPa Type I, 50 mm/min	Tensile stress, brk ASTM D 638	Tensile strain, yld	Tensile strain, brk	Flexural modulus	Izod impact, notched, 23°C	HDT unannealed	HDT unannealed
MPa							
İ	140	ASTM D 638	ASTM D 638	ASTM D 790	ASTM D 256	ASTM D 648	ASTM D 648
Type I, 50 mm/min	MPa	%	%	MPa	J/m	°C	°C
	Type I, 50 mm/min	Type I, 50 mm/min	Type I, 50 mm/min	1.3 mm/min, 50 mm span		0.45 MPa, 6.4 mm	1.82 MPa, 6.4 mm
63	58	6	108	2410	687		125 (3.2 mm)
62	65	6	120	2300	640	137	126
62	68	7	125	2130	694	137	129
62	68	7	130	2340	801	137	132
62	68	7	135	2340	907	137	132
62	65	6	120	2300	640	137	126
62	68	7	125	2130	694	137	129
62	74	6.5	140	2400	840	138	132
62	68	6.5	135	2340	907	137	132
62	72	6.5	125	2340	935	142	132
Type I, 50 mm/min	Type I, 50 mm/min	Type I, 50 mm/min	Type I, 50 mm/min	1.3 mm/min, 50 mm span		0.45 MPa, 3.2 mm	1.82 MPa, 3.2 mm
60	58	5.8	119	2360	702		120
							124
	-		-	-			
61	64	6	129	2380	762		123
61	69	6	138	2310	968		126
66	70	7	>50	2200	600	148	142
65	71		122	2020	640		143
65	77		78	2330	373		148
Type I, 50 mm/min	Type I, 50 mm/min	Type I, 50 mm/min	Type I, 50 mm/min	1.3 mm/min, 50 mm span		0.45 MPa, 6.4 mm	1.82 MPa, 6.4 mm
50	52	5	150	2000	750		80
43	35	4	150	1900	800		60
Type I, 50 mm/min	Type I, 50 mm/min	Type I, 50 mm/min	Type I, 50 mm/min	1.3 mm/min, 50 mm span		0.45 MPa, 3.2 mm	1.82 MPa, 3.2 mm
47	46	5	150	1680	1120	79	75
62	65	6	110	2280	1000	122	111
Type I, 50 mm/min	Type I, 50 mm/min	Type I, 50 mm/min	Type I, 50 mm/min	1.3 mm/min, 50 mm span		0.45 MPa, 3.2 mm	1.84 MPa, 3.2 mm
57	45	5	150	2340	587	126	109
Type I, 5 mm/min	Type I, 5 mm/min	Type I, 5 mm/min	Type I, 5 mm/min	1.3 mm/min, 50 mm span		0.45 MPa, 3.2 mm	1.84 MPa, 3.2 mm
44	33	2	24	2340	320	96	82
46	35	2	18	2620	240	95	82
Type I, 5 mm/min	Type I, 5 mm/min	Type I, 5 mm/min	Type I, 5 mm/min	1.3 mm/min, 100 mm span		0.45 MPa, 6.4 mm	1.82 MPa, 6.4 mm
110		7	60	3510	53	210	201
95	90	7	85	3000	70	214	204
110	85	7	70	3720	56		198
186	179	2.5	2.5	11430	112		212
96		7	70	3170	53		190
Type I, 50 mm/min	Type I, 50 mm/min	Type I, 50 mm/min	Type I, 50 mm/min	1.3 mm/min, 50 mm span		0.45 MPa, 3.2 mm	1.84 MPa, 3.2 mm
71	57	5.3	30	2460	192	155	140
66	55	4.5	12.5	2450	314	163	148
58	49	7.2	28.1	2640	213	131	117
Type I, 50 mm/min	Type I, 50 mm/min	Type I, 50 mm/min	Type I, 50 mm/min	1.3 mm/min, 50 mm span		0.45 MPa, 6.4 mm	1.82 MPa, 6.4 mm
51	26	3.7	300	2340	53	154	54
51			300	2340	53	154	54
120 (5 mm/min)	120 (5 mm/min)	3 (5 mm/min)	3 (5 mm/min)	7580	85	215	207
58	26	3.7	140	2400	37	120	49
	62 62 62 62 62 62 62 7ype I, 50 mm/min 60 58 61 61 61 66 65 65 Type I, 50 mm/min 47 62 Type I, 50 mm/min 57 Type I, 5 mm/min 44 46 Type I, 5 mm/min 110 95 110 186 71 120 (5 mm/min)	62 68 62 65 62 68 62 74 62 68 62 72 Type I, 50 mm/min Type I, 50 mm/min 60 58 58 64 61 64 61 69 66 70 65 71 65 77 Type I, 50 mm/min Type I, 50 mm/min 50 52 43 35 Type I, 50 mm/min Type I, 50 mm/min 47 46 62 65 Type I, 50 mm/min Type I, 50 mm/min 57 45 Type I, 50 mm/min Type I, 50 mm/min 57 45 Type I, 5 mm/min Type I, 50 mm/min 10 95 90 110 85 186 179 96 Type I, 50 mm/min Type I, 50 mm/min 71 57 66 55 58 49 Type I, 50 mm/min Type I, 50 mm/min 71 57 66 55 58 49 Type I, 50 mm/min Type I, 50 mm/min 71 57 71 57 72 50 mm/min Type I, 50 mm/min 71 57 73 57 74 57 75 75 75 75 75 75 75 75 75 75 75 75 75 7	62 68 7 62 65 6 62 68 7 62 68 6.5 62 68 6.5 62 72 6.5 Type I, 50 mm/min Type I, 5 mm/min Type I, 5 mm/min Type I, 5 mm/min Type I, 5 mm/min Type I, 5 mm/min Type I, 5 mm/min Type I, 5 mm/min Type I, 5 mm/min Type I, 5 mm/min Type I, 5 mm/min Type I, 5 mm/min Type I, 5 mm/min Type I, 5 mm/min Type I, 5 mm/min Type I, 5 mm/min Type I, 5 mm/min Type I, 5 mm/min Type I, 50	62 65 6 120 62 68 7 125 62 68 6.5 136 62 68 6.5 135 62 72 6.5 125 Type I, 50 mm/min	62 68 7 135 2340	62	62

PERFORMANCE PROPERTIES STANDARD RESINS

					E CONSIDERATIO	NS (D)			PHYSIC	AL PROPERTIES (E)		
				STANDARDS AND REGULATO		Food	ontact	Light transmission	Specific gravity	Melt flow rate	Mold shrinkage,	
		No bromine/no chlorine flame retardant systems	RoHS compliant	UL 94 flame class ratings (G)	Biocompatible supported (I) healthcare			ASTM D 1003		ASTM D 1238	flow, 3.2 mm SABIC Method	
Product family	Grade/ series	used in grade (F)	(H)	class ratings (G)	product (J)	FDA (K)	EU (K)	%		g/10 min	%	
	PC RESINS							70		300°C/1.2 kgf	70	
LL/O (IA	925			V2-0.8mm; V0-1.1mm				Opaque	1.19	14	0.6 - 0.8	
	945			V2=0.8mm; V0=1.1mm				Opaque	1.19	10	0.6 - 0.8	
	925A			V2-0.8mm; V1-1.5mm;				86	1.19	13	0.6 - 0.8	
				V0-3.0mm								
	945AU FL3000			V2-0.8mm; V0-3.0mm			_	86	1.19	10	0.6 - 0.8	
	(Foamable)	•		V0–3.0mm				Opaque	1.19	9.5	0.9 - 1.1	
LEXAN E	EXL* RESINS									300°C/1.2 kgf		
	EXL1414			HB-0.7mm				Opaque	1.18	10	0.4 - 0.8	
	EXL9112			V0-1.5mm; 5VA-3.0mm				Opaque	1.18	17	0.4 - 0.8	
	EXL9330			V0-1.5mm; 5VA-3.0mm				Opaque	1.18	10	0.4 - 0.8	
	EXL5689			V0-1.5mm; 5VB-3.0mm				Opaque	1.26	9	0.2 - 0.6	
CYCOLO	DY* PC/ABS RESI	IN BLENDS								260°C/2.16 kgf		
	C1200HF			HB-1.2mm				Opaque	1.15	19 (260°C/5.0 kgf)	0.5 - 0.7	
	C6600			V2–0.8mm; V0–1.5mm; 5VB–2.0mm				Opaque	1.19	21.5	0.4 - 0.6	
	CY6010			V0-0.8mm; 5VB-1.5mm;				Opaque	1.18	34	0.4 - 0.5	
		_		5VA-3.0mm V0-1.2mm; 5VB-2.0mm;	_			Орацие	1.10	34	0.4 - 0.5	
	CY6110	•	•	5VA-2.0mm				Opaque	1.18	23	0.4 - 0.6	
	CY6310	•	•	V0–0.8mm; 5VB–1.5mm; 5VA–3.0mm				Opaque	1.16	20	0.4 - 0.6	
	CY6414	•	•	V0–1.2mm; 5VB–2.0mm; 5VA–2.0mm				Opaque	1.18	6	0.4 - 0.8	
	CX2244ME	•	•	V0–0.8mm; 5VB–1.5mm; 5VA–3.0mm				Opaque	1.19	20	0.4 - 0.6	
	CX2142ME	•	•	V0–1.2mm; 5VB–2.0mm; 5VA–2.0mm				Opaque	1.19	22.5	0.4 - 0.6	
	CM6210			V0-1.5mm				Opaque	1.28	14.6 (260°C/5.0 kgf)	0.4 - 0.6	
XENOY*	PC/POLYESTER	RESIN BLENDS								266°C/5.0 kgf		
	6370	•		HB-1.5mm				Opaque	1.44		0.3 - 0.4	
	6620			HB-1.5mm				Opaque	1.2		1.6 - 1.8	
	X3108(UV)			V0-0.8mm; 5VA-2.5mm				Opaque	1.34	9.3 (250°C/5.0 kgf)	1.1 - 1.2	
	X3515			V0-1.5mm; 5VA-3.0mm				Opaque	1.3	26.7	0.8 - 1.0	
GELOY*	ASA RESINS									220°C/10.0 kgf		
	XTWM206							Opaque	1.09	8.8	0.4 - 0.7	
	HRA222			V2–0.8mm; V0–2.0mm; 5VB–2.3mm				Opaque			0.4 - 0.6	
CYCOL	AC* ABS RESINS									230°C/3.8 kgf		
	XHMM1							Opaque	1.13	3 (260°C/5.0 kgf)	1.0 - 1.2	
	FR15			V0-1.5mm; 5VA-2.5mm				Opaque	1.2	4	0.5 - 0.7	
ULTEM*	PEI RESINS									337°C/6.6 kgf		
	1010			V-0-0.8 mm; 5VA-3.0mm		Available	Available		1.27	17.8	0.5 - 0.7	
	2100R	2		V0-0.4mm; 5VA-1.9mm			Available		1.34	7.8	0.5 - 0.6	
	2310	_2		V0-0.3mm; 5VA-1.2mm		Available	Available		1.51	7.6	0.2 - 0.4	
	4001	_2		V0-0.4mm; 5VA-1.5mm		Available	Available		1.33	9.5	0.5 - 0.7	
NORYL*	MODIFIED PPE	RESIN BLENDS								300°C/5.0 kgf		
	FN215X			V1-3.0mm				Opaque	1.1		0.6 - 0.8	
	(Foamable) GFN2(V1)			HB-1.5mm				Opaque	1.2	9	0.2 - 0.5	
GTX	GTX678			V1–1.5mm; V0–2.0mm;	_			Opaque	1.12	7	1.3 - 1.5	
				5VA/B –2.0mm								
PPX	PPX630(S)	ET DECINIC AND DUSTE					_	Opaque	1.19	2.6 (260°C)	0.2 - 0.23	
VALOX*		ET RESINS AND BLEND:		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					4.0-	266°C/5.0 kgf	000	
	365			V0-0.8mm; 5VA-2.2mm				Opaque	1.33	0.1	0.8 - 1.0	
	855 3706			V0–1.5mm V0–1.5mm; 5VA–2.5mm	_			Opaque	1.54	81 23	0.4 - 0.6 1.2 - 1.4	
	2100	_		VO-1.5 3VA-2.5	_			Opaque	1.3	23	1.4	

¹ GFN2V in Europe 2 Inherent flame resistance N/A: Not Applicable Additional footnotes listed on page 30.

			MECHANICA	AL PROPERTIES (E)			
Tensile stress, yld	Tensile stress, brk	Tensile strain, yld	Tensile strain, brk	Flexural modulus	Izod impact, notched, 23°C	HDT unannealed	HDT unannealed
ASTM D 638	ASTM D 638	ASTM D 638	ASTM D 638	ASTM D 790	ASTM D 638	ASTM D 638	ASTM D 638
MPa	MPa	%	%	MPa	J/m	°C	°C
Type I, 50 mm/min	Type I, 50 mm/min	Type I, 50 mm/min	Type I, 50 mm/min	1.3 mm/min, 50 mm span		0.45 MPa, 6.4 mm	1.82 MPa, 6.4 mm
62	65	6	125	2340	801	137	126
62	65	6	125	2340	801	137	126
62	67	6	125	2370	801	137	126
62	67	6	125	2370	801	137	126
N/A	40	N/A	3.2	1890	N/A	131	120
Type I, 50 mm/min	Type I, 50 mm/min	Type I, 50 mm/min	Type I, 50 mm/min	1.3 mm/min, 50 mm span		0.45 MPa, 3.2 mm	1.84 MPa, 3.2 mm
56	50	6	98	2230	865	139	124
58	58	5.8	103	2340	731	136	124
58	61	6	130	2060	801	134	120
55	44	4.4	15	3500	340		135
Type I, 50 mm/min	Type I, 50 mm/min	Type I, 50 mm/min	Type I, 50 mm/min	1.3 mm/min, 50 mm span		0.45 MPa, 3.2 mm	1.84 MPa, 3.2 mm
57	44	5	150	2340	587	129	112
63	48	4	80	2620	587	97	90
63	48	4	34	2790	92		81
63	47	4	65	2760	475		88
63	50	4	>50	2700	600	100	88
64	62	6	85	2330	795		118
66	57	4.2	98	2750	690		89
64	54	4	90	2700	600	94	84
64	50	4.9	80	3500	500		90
Type I, 50 mm/min	Type I, 50 mm/min	Type I, 50 mm/min	Type I, 50 mm/min	1.3 mm/min, 50 mm span		0.45 MPa, 6.4 mm	1.82 MPa, 6.4 mm
	91 (5 mm/min)		4 (5 mm/min)	5370	170	204	148
43	, ,		175	1720	801	98	60
52	42	6	26	2020	522		88 (3.2 mm)
52	42	4.3	44	1860	747	123	95
Type I, 50 mm/min	Type I, 50 mm/min	Type I, 50 mm/min	Type I, 50 mm/min	1.3 mm/min, 50 mm span		0.45 MPa, 3.2 mm	1.82 MPa, 3.2 mm
46	37	2.7	26	2450	210	97	84
63	56	4.3	>100		385		
Type I, 5 mm/min	Type I, 5 mm/min	Type I, 5 mm/min	Type I, 5 mm/min	1.3 mm/min, 50 mm span		0.45 MPa, 3.2 mm	1.84 MPa, 3.2 mm
50	35	2	30	2930	128		82
41	35	2.3	9	2720	213	82	70
Type I, 5 mm/min	Type I, 5 mm/min	Type I, 5 mm/min	Type I, 5 mm/min	2.6 mm/min, 100 mm span		0.45 MPa, 6.4 mm	1.82 MPa, 6.4 mm
110	71-7-1	7	60	109	32	207	198
114	115		6	5170	85	210	208
168	158		2	9230	85		210
103			40	3400	117		200
Type I, 50 mm/min	Type I, 50 mm/min	Type I, 50 mm/min	Type I, 50 mm/min	1.3 mm/min, 50 mm span		0.45 MPa, 3.2 mm	1.84 MPa, 3.2 mm
29	N/A	N/A	12	1900 (6.4 mm, 100 mm span)	N/A	89 (6.4 mm)	77 (1.82 MPa, 6.4 mm)
	90 (5 mm/min)		2.6 (5 mm/min)	5800	119	140	135
58	52	7	12	2600	100	195	
77	77		7.7	5550	165	155	133
Type I, 50 mm/min	Type I, 50 mm/min	Type I, 50 mm/min	Type I, 50 mm/min	1.3 mm/min, 50 mm span		0.45 MPa, 6.4 mm	1.82 MPa, 6.4 mm
41	41		120	2240	640	129	121
	89 (5 mm/min)			4820	53	204	187
48	39	6	50	1990	667	126 (3.2 mm)	85 (3.2 mm)
48	48		110	2060	534	137	98

PERFORMANCE PROPERTIES NP* SPECIALTY COMPOUNDS

THE SABIC LNP SPECIALTY COMPOUNDING BUSINESS OFFERS

extensive expertise in developing engineering thermoplastic custom compounds. LNP has demonstrated proven functionality across a diverse range of capabilities. A key area of functionality includes high performance, very high modulus, long fiber reinforced thermoplastics (LFRT). Other capabilities include radio-opaque, x-ray shielding, low wear/low COF (co-efficient of friction) and internally reinforced materials, to name a few. LNP compounds are offered for >20 different base resins.

LNP Colorcomp pre-colored unfilled resins offer the ability to combine a broad range of thermoplastic resins with pigments for critical color matches, fast service and small lots. Minimum lot sizes range from 110 lb - 4400 lb order sizes. Critical color matches may be available in 10 days for approval. Finally, fast order lead times at 15 business days, may offer flexibility and speed to our customers.

LNP THERMOCOMP* INTERNALLY REINFORCED COMPOUNDS

LNP Thermocomp materials represent a range of capabilities to reinforce resins and offer the potential for improved strength, stiffness or dimensional stability and x-ray shielding without the use of toxic lead. This family of products offers materials tailored for specialized mechanical and temperature performance, fatigue and creep resistance and also exceptional processing (EP) for thin-wall requirements. Depending on application requirements, LNP Thermocomp may also provide melt processable fluoropolymer compounds, and may facilitate chemical resistance or High Specific Gravity (HSG) options for custom weight and feel. LNP Thermotuf* compounds support the need for exceptional balance of strength and toughness.

			STANDARDS AND REGULATORY	PHYSICAL PROPERTIES (E)					
	INTERNALLY REINFOR			Light transmission ASTM D 1003 %	Specific gravity ASTM D 792 –	Melt volume rate ASTM D 1238 cc/10 min	Mold shrinkage ASTM D955 %		
GRADE/ SERIES	BASE RESIN	FIBER TYPE					FLOW, 3.2 MM		
AF001	ABS	glass		N/A	1.28	4 (230C/3.8kg)	.002		
DF006ER	PC	glass		N/A	1.42	25 (300C/2.16kg)	.001		
EC006	PEI	carbon		N/A	1.38	4.5 (345C/10kg)	.001003		
EF006	PEI	glass		N/A	1.52	11 (345C/10kg)	.002		
GF006	PSU	glass		N/A	1.48	15 (345C/10kg)	.002		
HF1006	PA 11	glass		N/A	1.26	12 (235C/3.8kg)	.001		
IF006	PA 6/12	glass		N/A	1.32	17 (235C/2.16kg)	.001002		
JF006	PES	glass	Solutions for RoHS (H) compliant;	N/A	1.58	11 (340C/5kg)	.003		
KF006	POM	glass	no bromine/no chlorine flame-	N/A	1.62	16 (190C/10kg)	.005		
LC006	PEEK	carbon	retardant systems (F); and healthcare considerations may be offered.	N/A	1.41	7.5 (400C/10kg)	.001		
LF006	PEEK	glass	Considerations may be offered.	N/A	1.53	7.5 (400C/10kg)			
OF006	PPS	glass	Due to the specialization of our	N/A	1.58	14 (315C/2.16kg)	.001003		
PF006	PA 6	glass	Speciality Compounding grades,	N/A	1.36	19 (235C/10kg)	.002		
QF006	PA 6/10	glass	please review specific healthcare	N/A	1.30	15 (235C/10kg)	.002		
RC006	PA 6/6	carbon	standards and/or regulatory requirements with a SABIC Innovative	N/A	1.27	15 (275C/5kg)	.002		
RF006	PA 6/6	glass	Plastics representative.	N/A	1.40	18 (275C/6.7kg)	.004		
SF006	PA 12	glass		N/A	1.24	14 (235C/2.16kg)	.002003		
WF006	PBT	glass		N/A	1.55	16 (250C/2.16kg)	.003		

LNP LUBRICOMP* AND LUBRILOY* INTERNALLY LUBRICATED COMPOUNDS
LNP Lubricomp compounds offer inherent lubricity by combining engineering resins with PTFE, silicone, aramid fiber or other fillers. These materials are utilized to help increase wear resistance, reduce COF (coefficient of friction) and reduce slip-stick effects of plastic parts moving over other surfaces, whether it's plastic-onmetal wear or plastic-on-plastic wear. They may also limit the need for external/topical lubricants. Options to include glass fibers for improved strength, rigidity and dimensional stability are also available. LNP Lubriloy compounds offer PTFE- and silicone-free solutions.

				STANDARDS AND REGULATORY		PHYSICAL P	PROPERTIES (E)		
LNP Lubricomp and Grades listed demon is noted, and 15% lul	strate 30% fiber w	eight loading			Light transmission ASTM D 1003 %	Specific gravity ASTM D 792 –	Melt volume rate ASTM D 1238 cc/10 min	Mold shrinkage ASTM D955 %	
GRADE/ SERIES	BASE RESIN	FIBER TYPE	LUBRICANT TYPE					FLOW, 3.2 MM	
ABL12 ¹	ABS	glass	PTFE		N/A	1.14			
AL003	ABS		PTFE		N/A	1.13	18 (230C/6.7kg)	.006008	
DCL36	PC	carbon	PTFE		N/A	1.43	12 (300C/6.7kg)	.001	
DFL36	PC	glass	PTFE		N/A	1.58	11 (300C/3.8kg)	.001002	
DL003	PC		PTFE		N/A	1.28	14 (300C/3.8kg)	.008009	
ECL36	PEI	carbon	PTFE		N/A	1.48	6 (345C/10kg)	.000	
EFL36	PEI	glass	PTFE	Solutions for RoHS (H)	N/A	1.62	12 (345C/10kg)	.002	
EL003	PEI		PTFE	compliant; no bromine/	N/A	1.35	11 (345C/6.7kg)	.008010	
EX035991	PEI		PFPE	no chlorine flame-retardant	N/A	1.28			
EX03647H1	PEI	carbon	PFPE	systems (C); and healthcare	N/A	1.39			
JFL36	PES	glass	PTFE	considerations may be offered.	N/A	1.70	13 (345C/10kg)	.001004	
OCL36	PPS	carbon	PTFE	Due to the specialization of	N/A	1.52	13 (315C/5kg)	.001	
OFL36	PPS	glass	PTFE	our Speciality Compounding	N/A	1.69	24 (315C/5kg)	.001002	
QFL36	PA 6/10	glass	PTFE	grades, please review specific	N/A	1.46	19 (235C/5kg)	.002	
RCL36S	PA 6/6	carbon	PTFE	healthcare standards and/or	N/A	1.38	9 (275C/6.7kg)	.001	
RFL36	PA 6/6	glass	PTFE	regulatory requirements with a SABIC Innovative Plastics	N/A	1.51	19 (275C/10kg)	.003	
RL004S	PA 6/6		PTFE	representative.	N/A	1.27	16 (275C/1.2kg)	.019033	
WFL36	PBT	glass	PTFE	representative.	N/A	1.68	15 (250C/3.8kg)	.001003	
ZFL36CCX	PPO	glass	PTFE		N/A	1.43	6 (280C/10kg)	.003	
1 Ethan and take damaker		- f 200/ L :	1 = 0/		NIZA NICK CONTRACTOR				

¹ Fiber and lubricant weight loading differ from 30% / 15% as noted above.

N/A: Not applicable Blank cells: not tested Additional footnotes listed on page 30.

LNP STAT-KON* AND STAT-LOY* ELECTRICALLY ACTIVE COMPOUNDS
LNP Stat-Kon compounds are made by compounding base resins with electrically conductive fillers or reinforcing agents, producing conductive and dissipative materials in the 10² to 108 ohms/sq. resistivity range. In addition to protecting parts and components against static build-up and ESD electrostatic discharge events, this line of materials offers a range of mechanical, physical and thermal properties depending on the base resin selected.

LNP Stat-Loy alloy compounds combine an insulative base resin with an inherently conductive polymer to provide permanent anti-static performance. Stat-Loy compounds are non-sloughing and colorable. These compounds offer cost-effective solutions when products for anti-stat applications are required.

LNP FARADEX* CONDUCTIVE EMI/RFI ATTENUATION COMPOUNDS

LNP Faradex compounds provide electromagnetic and radio frequency interference (EMI/RFI) attenuation in applications from electronics to material handling. Conductive fibers form the conductive network required for EMI/RFI shielding. Faradex compounds can also be used in applications where ESD protection is required. These compounds provide mechanical properties, part weight and a design freedom similar to standard unfilled base resins. They help to avoid costly secondary steps, offering the potential for total system cost reduction.

	MECHANICAL PROPERTIES (E)										
Tensile stre ASTM D MPa	638 ASTM D 638	Tensile strain, yld ASTM D 638 %	Tensile strain, brk ASTM D 638 %	Flexural modulus ASTM D 790 MPa	Izod impact, notched ASTM D 256 J/m	HDT unannealed ASTM D 648 °C					
TYPE 50 MM/		TYPE I, 50 MM/MIN	TYPE I, 50 MM/MIN	1.3 MM/MIN, 50 MM SPAN	23°C	1.82 MPA, 6.4 MM					
55	55		1.8	9170	58.7	102					
132	132	2.7	2.7	8760	108	137					
197	197	1.3	1.3	18200	42.7	218					
188	188	2.4	2.4	11400	97	204					
104	104	2.0	2.0	8270	74	181					
134	134	5.3	6.2	6210	256	178					
182	182	3.7	3.7	9310	139	198					
143	143	2.2	2.2	9720	108	210					
132	148	4.3	2.8	10300	85.4	162					
225	225	1.4	1.5	20200	74.7	299					
176	176	2.0	1.9	10800	117	299					
145	130		1.2	11300	69.4	268					
130	130	2.6	2.8	6960	117	206					
150	150	3.6	3.6	7860	123	207					
266	266	1.7	1.7	18800	96.1	262					
165	165	2.4	2.4	9450	58.7	255					
107	106	4.2	4.7	5860	149	164					
137	137	2.9	2.9	9360	90.7	207					

MECHANICAL PROPERTIES (E)							WEAR PROPERTIES		
Tensile stress, yld ASTM D 638 MPa	Tensile stress, brk ASTM D 638 MPa	Tensile strain, yld ASTM D 638 %	Tensile strain, brk ASTM D 638 %	Flexural modulus ASTM D 790 MPa	Izod Impact, notched ASTM D 256 J/m	HDT unannealed ASTM D 648 °C	Wear factor LNP WI-0687	COF static/ dynamic LNP WI-0687	
					37		10 ⁻¹⁰ in ⁵ -min/ft-lb-hr		
TYPE I, 50 MM/MIN	TYPE I, 50 MM/MIN	TYPE I, 50 MM/MIN	TYPE I, 50 MM/MIN	1.3 MM/MIN, 50 MM SPAN	23°C	1.82 MPA, 6.4 MM	40 PSI, 50 FPM THRUST WASHER TEST	40 PSI, 50 FPM THRUST WASHER TEST	
35.3			20.3	2401	84	79	125	0.39/0.44	
35.9	35.9	2.3	15	2060	58.7		101	0.11/0.22	
168	159	1.7	1.7	17900	123	146	38	0.34/0.43	
117	117	2.5	2.5	9310	171	141	22	0.41/0.46	
51.7	47.6	6.1	38	2190	272	128	36	0.12/0.25	
163	179	1.7	1.7	19200	42.7		31	0.48/0.39	
160	175	2	2.0	11300	123	202	35	0.43/0.46	
88.3	84.8	6.5	10	2900	69.4	182	106	0.23/0.30	
					41		PV failure	0.45/0.44	
					67		30	0.68/0.49	
	93.8	1.5	1.5	10300	85.4	208	60	0.36/0.46	
177	168	1.4	1.4	21100	58.7	267	19	0.34/039	
145	145	1.7	1.7	11000	85.4	269	33	0.35/0.44	
149	149	2.6	2.6	8480	117	216	15	0.52/0.71	
225	182	.9	.9	18400	101	255	15	0.30/0.36	
139	139	2.1	2.1	9750	107	249	30	0.46/0.59	
62.7	62.7	5.4	6.2	2280	42.7	70	16	0.11/0.23	
117	117	2.3	2.3	10200	96.1	218	42	0.41/0.57	
N/A	110	1.7	1.7	10000	123	124	45	0.46/0.50	
14//	110	1.1	1.1	10000	123	127		0.10/0.50	

FOOTNOTES TO PRODUCT CHARTS PP11, 24-29

- A Biocompatibility: material evaluated based on ISO 10993 or USP Class VI protocol; supporting information available by Type I or Type II letter. Reference footnote I below.
- B Advanced hemocompatibility and low protein binding: Lexan HPM resins demonstrate improved hemocompatibility vs standard polycarbonate across multiple biomarkers and test methods. Please contact SABIC Innovative Plastics for further information.
- C Implant policy: SABIC Innovative Plastics does not support applications that remain implanted beyond 29 days.
- D Healthcare Considerations: The material may offer capability of attribute shown; please consult with a SABIC Innovative Plastics representative for additional information.
- E Physical and Mechanical Properties: Information presented in parenthesis () after data indicates that different test conditions were applied.
- F No bromine, no chlorine flame-retardant systems used in grade formulation; however, final product assessment must include colorants (grade-color combination).
- G UL 94 Flame class rating: Representative information from UL Yellow Card provided; see UL (www.ul.com) for full Yellow Card data set.
- H RoHS compliant: Grade listed conforms to EU Directive 2002/95/EC Restriction of Hazardous Substances (RoHS); final assessment must include colorants (grade-color combination).
- I Biocompatibility: A representative lot of material evaluated based on ISO 10993 or USP VI protocol. Biocompatibility information available via Type I or Type II letter. Type I Letter: Issued for products that have been specifically tested for biocompatibility. Type II Letter: Issued when specific product has not been tested but similar products have been tested for biocompatibility.

SABIC Innovative Plastics does not knowingly support the use of grades not designated as "biocompatible supported" in healthcare applications requiring biocompatibility.

- J The SABIC Innovative Plastics "Healthcare product" policy
 Easily identifiable "healthcare product" nomenclature
 Cycolac* HM resins
 Ultem* HU and HA resins
 - - Cycolac* HM resins
 - Cycoloy* HC resins - Valox* HX resins - Xenoy* HX resins - Xylex* HX resins - Lexan* HP resins - Noryl* HN resins
 - Biocompatibility assessed (according to ISO10993 or USP Class VI)
 - Food contact compliance for most "healthcare products"
 - FDA Drug Master File and/or Device Master File listing (Letter of Authorization provided as needed)
 - SABIC Innovative Plastics "healthcare products" are subject to formula lock and stringent management of change process (ask your SABIC Innovative Plastics representative for more details)
- K Food Contact: Food contact status may be contingent on the color package used in combination with the base resin.
- L Steam sterlization: Though steam autoclave testing has been conducted, performance may vary by exact temperature, time and conditions of exposure. Design of device also influences duration of materials' ductility in use.

CONTACT US

Riyadh, Saudi Arabia

SABIC Corporate Headquarters
PO Box 5101
Riyadh 11422
Saudi Arabia
T +966 (0) 1 225 8000
F +966 (0) 1 225 9000
E info@sabic.com

Europe

SABIC Innovative Plastics Plasticslaan 1 PO Box 117 4600 AC Bergen op Zoom The Netherlands T +31 164 292911 F +31 164 292940

Technical Answer Center T 0800 1 238 5060 *toll free (if mobile disruption +36 1 238 5060)

Asia Pacific

SABIC Innovative Plastics 1266 Nanjing Road (W) Floor 16, Plaza 66 200040 Shanghai China T +86 21 3222 4500 F +86 21 6289 8998

Americas

SABIC Innovative Plastics One Plastics Avenue Pittsfield, MA 01201 USA T +1 413 448 7110 F +1 413 448 5573

Technical Answer Center T +1 800 845 0600

Email

productinquiries@sabic-ip.com

THE MATERIALS, PRODUCTS AND SERVICES OF SABIC INNOVATIVE PLASTICS HOLDING BV, ITS SUBSIDIARIES AND AFFILIATES ("SELLER"), ARE SOLD SUBJECT TO SELLER'S STANDARD CONDITIONS OF SALE, WHICH CAN BE FOUND AT HTTP://www.sabic-ip.com AND ARE AVAILABLE UPON REQUEST. ALTHOUGH ANY INFORMATION OR RECOMMENDATION CONTAINED HEREIN IS GIVEN IN GOOD FAITH, SELLER MAKES NO WARRANTY OR GUARANTEE, EXPRESS OR IMPLIED, (I) THAT THE RESULTS DESCRIBED HEREIN WILL BE OBTAINED UNDER END-USE CONDITIONS, OR (II) AS TO THE EFFECTIVENESS OR SAFETY OF ANY DESIGN INCORPORATING SELLER'S PRODUCTS, SERVICES OR RECOMMENDATIONS. EXCEPT AS PROVIDED IN SELLER'S STANDARD CONDITIONS OF SALE, SELLER SHALL NOT BE RESPONSIBLE FOR ANY LOSS RESULTING FROM ANY USE OF ITS PRODUCTS OR SERVICES DESCRIBED HEREIN. Each user is responsible for making its own determination as to the suitability of Seller's products, services or recommendations for the user's particular use through appropriate end-use testing and analysis. Nothing in any document or oral statement shall be deemed to alter or waive any provision of Seller's Standard Conditions of Sale or this Disclaimer, unless it is specifically agreed to in a writing signed by Seller. No statement by Seller concerning a possible use of any product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right of Seller or as a recommendation for the use of such product, service or design in a manner that infringes any patent or other intellectual property right.

- * Trademarks of SABIC Innovative Plastics IP BV
- ® Aisys and Carestation are trademarks of Datex-Ohmeda, Inc.
- Voluson is a registered trademark of General Electric Company
- ® Clearview MV is a tradmark of ESTECH
- ® Betadine is a registered trademark of Purdue Frederick
- ® Virex is a registered trademark of SC Johnson & Son, Inc
- © Cidex is a registered trademark of Johnson & Johnson Medical Ltd Insorb® | 20 is a registered trademark of Incisive Surgical, Inc
- © 2012 SABIC Innovative Plastics IP BV. All Rights Reserved.