Quick Guide to Injection Molding Ixef® PARA

EQUIPMENT

Ixef[®] polyarylamide (PARA) resins can be processed on conventional injection molding equipment.

- Estimated clamp tonnage of 1T/cm² (4 T/in²) is required.
- Standard (general purpose) screws with a compression ratio between 2:1 and 3:1 and a L/D ratio between 15:1 and 20:1 are suggested.
- Use a ring-check valve, not a ball-check valve.
- Use a reverse taper nozzle to minimize drooling or freeze off.
- Use insulation plates between the mold and machine platens.
- Use a mold temperature control unit with either water or oil depending on the processing temperatures required.
- When using oil heaters, ensure that lines, seals, and heat transfer fluids are suitable for the processing temperatures.
- Use a desiccated hopper dryer to ensure that the resin remains dry during processing.
- Select a barrel capacity for a residence time no greater than 6 minutes. An indication of the residence time is given by:

Residence Time, Minutes $= 2 \times \frac{\text{Barrel Capacity x Cycle Time, Seconds}}{\text{Shot Size x 60}}$

• Hot runner systems must be designed for hightemperature crystalline polymers.

Table 1: Drying Instructions

Drying Method	Temperature	Hours
Hot air	80°C (175°F)	12
Desiccant	120°C (250°F)	4 to 5

DRYING

Ixef compounds are delivered in granular form (bulk density around 0.7 g/cm³) usually in 25 kg bags or 1 ton octabins. Both package types are sealed and water-tight, so it is not necessary to dry the product before processing. Bags open 24 hours or more should be dried according to the guidelines in Table 1.

INJECTION

The settings of the injection phase cannot be carried out until the mold temperature and material temperature are correct and verified above 120°C (250°F). An item molded at too low a mold temperature can suffer from the following defects:

- Increased moisture pick-up
- Risk of post-crystallization
- Poor surface appearance
- Higher tendency to creep
- Lower shrinkage

See Table 2 for starting point molding conditions.

Table 2: Starting Point Molding Conditions

Material temperature (purged)

Standard grades	280°C (535°F)
Flame-retardant and impact modified grades	< 270°C (< 520°F)
Cylinder temperatures	

Feed zone	250°C to 280°C (480°F to 535°F)
Compression zone	250°C to 280°C (480°F to 535°F)
Metering zone	250°C to 280°C (480°F to 535°F)
Nozzle zone	260°C to 290°C (500°F to 555°F)
Hot runners (when used)	250°C to 280°C (480°F to 500°F)
Mold temperature	120°C to 140°C (250°F to 285°F)
Injection speed	High, 0.5 s to 2.5 s
Hold pressure	500 bar to 1,500 bar (specific) (7,250 psi to 21,750 psi)
Back pressure	0 bar to 10 bar (hydraulic) (0 psi to 150 psi)
Screw speed	3 m/min to 10 m/min

Temperature

- Ixef compounds require a mold temperature of at least 120°C (250°F)
- Verify the temperature of the mold cavities using a temperature probe.
- Confirm the melt temperature using a temperature probe moved about in a volume of melt, shot onto an insulator (a glove, cardboard, etc.).

Shot volume

- Set the initial cooling time.
- Set a zero hold time and/or pressure.
- Inject incomplete parts by gradually increasing the shot volume using an average to high injection speed.
- When the mold is almost filled (95% to 98%), set the initial hold pressure and gradually increase the hold time. See Table 3 for more specific guidelines.
- In this way, the end of the filling is done under constant pressure and part over-packing is avoided.

Table 3: Hold and Cooling	
Hold time, seconds	3 s x w ⁽¹⁾
Cooling time, seconds	2.5 s x w ²⁽²⁾
$^{(1)}w = wall thickness, mm$	

 $^{(2)}$ w = wall thickness, mm, ≥ 2 mm

Troubleshooting

Table 4 is a troubleshooting guide that contains the solution to many common molding problems. If problems persist, contact your Solvay representative for additional assistance and technical service.

SAFETY PROCEDURES

Proper safety procedures must be followed at all times:

- All machine guards and covers must be in place. Required personal protection equipment must be worn. Face shields, gloves, and long sleeves are recommended. Purge barriers should be placed against the sprue bushing to protect the tool. Purged materials are very hot and should be handled and disposed of with care.
- Always be alert of the possibility that resin decomposition can occur. Typical signs of resin decomposition include badly discolored resin purge and excessive gas generation. When resin decomposition is suspected, assume that gas at high pressure is present and take appropriate action to prepare for the release of high-pressure gas. Be particularly cautious with plugged nozzles and follow all established safety guidelines.

Table 4: Troubleshooting Guide		
Problems	Suggested remedies	
Greasy spots on the parts and mold (signs of degradation)	Reduce material temperature (screw and/or hot runners)	
Whitish spots (same phenomenon but with cold mold)	Increase mold temperature	
	Reduce material temperature (screw and/or hot runners)	
	Release agents, lubricants	
Bad surface appearance	Increase mold temperature	
	Increase injection speed	
	Verify holding time and pressure	
Glass fibers visible on surface	Increase mold temperature	
	Increase injection speed	
	Increase runner dimensions	
	Increase material temperature	
Jetting	Modify injection point position	
	Reduce the initial injection speed	
	Increase the cross-sectional area of the injection point	
Burning	Increase venting	
	Reduce injection speed at end of filling	
Incomplete part	Increase shot volume	
	Increase injection pressure and speed	
	Increase runner dimensions	
	Increase material temperature	
	Increase venting	
Deformed part	Increase the temperature of the mold	
	Modify the part design, avoiding major thickness differences	
	Increase holding pressure to reduce shrinkage	
	Modify position and dimension of the injection gate	
	Increase the cooling time	
The part or the sprue sticks in the mold	Reduce holding time	
	Reduce holding pressure level	
	Increase the draft angle of the mold cavity	
Sink marks	Increase the holding time and pressure	
	Change the position and dimension of the injection point	

www.SolvaySpecialtyPolymers.com

Contact Solvay Specialty Polymers

Europe, Middle East and Africa	SpecialtyPolymers.EMEA@solvay.com
Americas	SpecialtyPolymers.Americas@solvay.com
Asia and Australia	SpecialtyPolymers.Asia@solvay.com

Material Safety Data Sheets (MSDS) are available by emailing us or contacting your sales representative. Always consult the appropriate MSDS before using any of our products.

Neither Solvay Specialty Polymers nor any of its affiliates makes any warranty, express or implied, including merchantability or fitness for use, or accepts any liability in connection with this product, related information or its use. Some applications of which Solvay's products may be proposed to be used are regulated or restricted by applicable laws and regulations or by national or international standards and in some cases by Solvay's recommendation, including applications of food/feed, water treatment, medical, pharmaceuticals, and personal care. Only products designated as part of the Solviva[®] family of biomaterials may be considered as candidates for use in implantable medical devices. The user alone must finally determine suitability of any information or products for any contemplated use in compliance with applicable law, the manner of use and whether any patents are infringed. The information and the products are for use by technically skilled persons at their own discretion and risk and does not relate to the use of this product in combination with any other substance or any other process. This is not a license under any patent or other proprietary right.

All trademarks and registered trademarks are property of the companies that comprise the Solvay Group or their respective owners. G-50682 © 2012 Solvay Specialty Polymers USA, LLC. All rights reserved. D 01/1999 | R 07/2012 | Version 2.3

